Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/14172
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHorprathum M.
dc.contributor.authorLimwichean K.
dc.contributor.authorWisitsoraat A.
dc.contributor.authorEiamchai P.
dc.contributor.authorAiempanakit K.
dc.contributor.authorLimnonthakul P.
dc.contributor.authorNuntawong N.
dc.contributor.authorPattantsetakul V.
dc.contributor.authorTuantranont A.
dc.contributor.authorChindaudom P.
dc.date.accessioned2021-04-05T03:33:26Z-
dc.date.available2021-04-05T03:33:26Z-
dc.date.issued2013
dc.identifier.issn9254005
dc.identifier.other2-s2.0-84872517443
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/14172-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84872517443&doi=10.1016%2fj.snb.2012.09.077&partnerID=40&md5=ed09986fddd4de5153dfe10a9652b47b
dc.description.abstractIn this work, the NO2-sensing properties of the tungsten trioxide (WO3) nanorods prepared by dc magnetron sputtering with glancing-angle deposition (GLAD) technique are comparatively studied with that of WO3 thin film deposited by normal sputtering process. The crystal structure and morphologies were characterized by grazing-incidence X-ray diffraction and field emission scanning electron microscopy, respectively. As-deposited WO3 structure deposited at glancing angle of 85? exhibited amorphous crystal structure with uniform isolated columnar nanorod morphology with average length, diameter and spacing between nanorods of around 400 nm, 50 nm and 10 nm, respectively. Annealing at 400 and 500 ° resulted in polycrystalline phase and more porous nanorod network with very large effective surface area. The NO2 sensing response of WO3 nanorods was found to be higher than that of WO3 thin film by a factor of 2-5 depending on operating temperature and gas concentration. In addition, WO3 nanorod annealed at 500 ° exhibited an optimum response of ~27-2.0 ppm of NO2 at 250 °. Therefore, GLAD using reactive dc magnetron sputtering has been demonstrated as a practical method for fabrication of well-aligned metal oxide nanostructures and is potential for gas-sensing applications. © 2012 Elsevier B.V. All rights reserved.
dc.subjectAmorphous materials
dc.subjectAnnealing
dc.subjectDeposition
dc.subjectField emission microscopes
dc.subjectFilm preparation
dc.subjectGas sensing electrodes
dc.subjectMagnetron sputtering
dc.subjectMetals
dc.subjectNanorods
dc.subjectNitrogen oxides
dc.subjectScanning electron microscopy
dc.subjectSputtering
dc.subjectThin films
dc.subjectTungsten
dc.subjectX ray diffraction
dc.subjectCrystal structure and morphology
dc.subjectField emission scanning electron microscopy
dc.subjectGas sensing applications
dc.subjectGlancing Angle Deposition
dc.subjectGlancing angle deposition technique
dc.subjectGrazing incidence X-ray diffraction
dc.subjectReactive DC magnetron sputtering
dc.subjectTungsten trioxide
dc.subjectCrystal structure
dc.titleNO2-sensing properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering
dc.typeArticle
dc.rights.holderScopus
dc.identifier.bibliograpycitationSensors and Actuators, B: Chemical. Vol 176, No. (2013), p.685-691
dc.identifier.doi10.1016/j.snb.2012.09.077
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.