DSpace Repository

Performance of membrane photobioreactor for integrated Spirulina strain cultivation and nutrient removal of membrane bioreactor effluent

Show simple item record

dc.contributor.author Theepharaksapan S.
dc.contributor.author Lerkmahalikit Y.
dc.contributor.author Namyuang C.
dc.contributor.author Ittisupornrat S.
dc.contributor.other Srinakharinwirot University
dc.date.accessioned 2023-11-15T02:09:10Z
dc.date.available 2023-11-15T02:09:10Z
dc.date.issued 2023
dc.identifier.uri https://www.scopus.com/inward/record.uri?eid=2-s2.0-85165617279&doi=10.1016%2fj.jece.2023.110579&partnerID=40&md5=abd21a9d08c18cd49bd502d11ef3f9ef
dc.identifier.uri https://ir.swu.ac.th/jspui/handle/123456789/29579
dc.description.abstract Water reuse by wastewater treatment techniques is implemented to promote a circular economy strategy and alleviate water shortage. The microalgae-based wastewater treatment is an environmentally friendly tool to treat secondary or tertiary wastewater by removing the remaining nutrients, primarily dissolved nitrogen (N) and phosphorus (P). This research aimed to study the membrane photobioreactor (MPBR) performance to treat nitrate nitrogen (NO3-N) and phosphate (PO4) that remained in the membrane bioreactor (MBR) effluent by varying hydraulic retention times (HRTs) and solids retention times (SRTs). Bench-scale of MPBR (63 L) was continuously operated by cultivating Spirulina sp. TISTR 8875. The LED light intensity of 3000–5000 lux was provided 24 h daily. The experimental studies evaluated HRTs in the range of 6.4–9.7 days and SRTs at 20, 40, 60, and 80 days, and the microalgae cells were not removed (infinite SRT). The results showed that the HRT range of 7.7–7.8 days and SRT range of 60–80 days exhibited NO3-N and PO4 removal efficiencies of 39.3–40.9% and 43.8–46.6%, respectively, with the NO3-N and PO4 removal rates of 2.47–2.55 and 0.22–0.23 mg/L-d, respectively. In addition, iron (Fe) in the form of FeEDTA, has been added to the microalgae cultivation at a concentration of 0.07 g/L. It was found that Fe plays an essential role in the growth of microalgae and increases nutrient removal efficiency. The experimental results indicate that the cultivation of Spirulina sp. TISTR 8875 is expected to treat nutrients by the MPBR system as a promising water reuse and nutrient recovery potential. © 2023 Elsevier Ltd
dc.publisher Elsevier Ltd
dc.subject Membrane photobioreactor
dc.subject Microalgae
dc.subject Nutrient removal
dc.subject Spirulina sp
dc.subject Water reuse
dc.title Performance of membrane photobioreactor for integrated Spirulina strain cultivation and nutrient removal of membrane bioreactor effluent
dc.type Article
dc.rights.holder Scopus
dc.identifier.bibliograpycitation Journal of Environmental Chemical Engineering. Vol 11, No.5 (2023)
dc.identifier.doi 10.1016/j.jece.2023.110579


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics