Abstract:
In engineering applications, flexible beam vibration control is an important issue. Although several researchers have discussed controlling beam vibration, there are few strategies for implementing it in actual applications. The passivity-based boundary control for suppressing flexible beam vibration was investigated in this paper. The controller was implemented using a moving base, and the beam model was an undamped shear beam. The control law was established using the storage function in the design technique. The finite-gain L2 - stability of the feedback control system was then proven. This method dealt directly with the PDE of the beam model with no model reduction. Because of the non-collocated measurement and actuation in many applications, the backstepping observer was required for state estimation. Since the controller was implemented at the end of the beam via a moving base, the beam domain remained intact. Therefore, the method is simple to apply in applications. With the use of the finite-difference approach, the PDEs were numerically solved. The controller's performance of the proposed control scheme was demonstrated using computer simulation. © 2022 The Authors