dc.contributor.author |
Sriyapai T. |
|
dc.contributor.author |
Somyoonsap P. |
|
dc.contributor.author |
Matsui K. |
|
dc.contributor.author |
Kawai F. |
|
dc.contributor.author |
Chansiri K. |
|
dc.date.accessioned |
2021-04-05T03:35:28Z |
|
dc.date.available |
2021-04-05T03:35:28Z |
|
dc.date.issued |
2011 |
|
dc.identifier.issn |
13891723 |
|
dc.identifier.other |
2-s2.0-79954829587 |
|
dc.identifier.uri |
https://ir.swu.ac.th/jspui/handle/123456789/14534 |
|
dc.identifier.uri |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79954829587&doi=10.1016%2fj.jbiosc.2010.12.024&partnerID=40&md5=27e0f9a59b6c3918a7b73b57d4fd70ff |
|
dc.description.abstract |
A thermophilic xylan-degrading Actinomadura sp. S14 was isolated from compost in Thailand. Hemicellulase activities such as endo-1,4-β-xylanase, β-xylosidase and α-arabinofuranosidase were induced with xylan-containing agriculture wastes and oat spelt xylan. The gene encoding xylanase consisting of 687bp was cloned from Actinomadura sp. S14. The deduced amino acid sequence contained a signal peptide of 41 amino acids and a probable mature xylanase of 188 amino acids. An open reading frame (xynS14) corresponding to a mature xylanase was expressed in Escherichia coli and Pichia pastoris. The specific activity of purified XynS14 (P. pastoris) was 2.4-fold higher than XynS14 (E. coli). Both XynS14s showed the same basic properties such as optimal pH and temperature (pH 6.0 and 80°C) and stability in a broad pH range (pH 5.0-11.0) and at high temperatures up to 80°C. Both XynS14s showed approximately the same substrate specificity and Km values toward various xylans, but XynS14 (P. pastoris) showed higher Vmax and Kcat than XynS14 (E. coli). Higher specific activities of XynS14 (P. pastoris) may be due to protein-folding in the host. Purified XynS14 showed more endo-1,4-β-xylanase activity on xylan and xylooligosaccharides than on xylotriose. © 2010 The Society for Biotechnology, Japan. |
|
dc.subject |
Actinomadura sp. S14 |
|
dc.subject |
Family 11 |
|
dc.subject |
Hemicellulases |
|
dc.subject |
Pichia Pastoris |
|
dc.subject |
Thermostable xylanase |
|
dc.subject |
Amino acids |
|
dc.subject |
Cloning |
|
dc.subject |
Composting |
|
dc.subject |
Escherichia coli |
|
dc.subject |
Hydrolases |
|
dc.subject |
Purification |
|
dc.subject |
Sugars |
|
dc.subject |
Gene encoding |
|
dc.subject |
xylan endo 1,3 beta xylosidase |
|
dc.subject |
Actinomadura |
|
dc.subject |
amino acid sequence |
|
dc.subject |
article |
|
dc.subject |
enzyme activity |
|
dc.subject |
Escherichia coli |
|
dc.subject |
molecular cloning |
|
dc.subject |
nonhuman |
|
dc.subject |
nucleotide sequence |
|
dc.subject |
open reading frame |
|
dc.subject |
Pichia pastoris |
|
dc.subject |
protein expression |
|
dc.subject |
protein folding |
|
dc.subject |
signal transduction |
|
dc.subject |
thermostability |
|
dc.subject |
Actinomycetales |
|
dc.subject |
Amino Acid Sequence |
|
dc.subject |
Base Sequence |
|
dc.subject |
Cloning, Molecular |
|
dc.subject |
Endo-1,4-beta Xylanases |
|
dc.subject |
Escherichia coli |
|
dc.subject |
Fungal Proteins |
|
dc.subject |
Glycoside Hydrolases |
|
dc.subject |
Hydrogen-Ion Concentration |
|
dc.subject |
Molecular Sequence Data |
|
dc.subject |
Pichia |
|
dc.subject |
Recombinant Proteins |
|
dc.subject |
Substrate Specificity |
|
dc.subject |
Temperature |
|
dc.subject |
Thailand |
|
dc.subject |
Trisaccharides |
|
dc.subject |
Xylans |
|
dc.subject |
Actinomadura sp. |
|
dc.subject |
Escherichia coli |
|
dc.subject |
Pichia pastoris |
|
dc.subject |
Triticum aestivum subsp. spelta |
|
dc.title |
Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris |
|
dc.type |
Article |
|
dc.rights.holder |
Scopus |
|
dc.identifier.bibliograpycitation |
Journal of Bioscience and Bioengineering. Vol 111, No.5 (2011), p.528-536 |
|
dc.identifier.doi |
10.1016/j.jbiosc.2010.12.024 |
|