Please use this identifier to cite or link to this item:
https://ir.swu.ac.th/jspui/handle/123456789/27563
Title: | Graph Realizations Constrained by Connected Local Dimensions and Connected Local Bases |
Authors: | Khemmani V. Pho-On W. Isariyapalakul S. |
Issue Date: | 2022 |
Abstract: | For an ordered set W = {w1, w2, ⋯, wk} of k distinct vertices in a connected graph G, the representation of a vertex v of G with respect to W is the k-vector r(v|W) = (d(v,w1), d(v,w2), ⋯, d(v,wk)), where d(v,wi) is the distance from v to wifor 1 ≤ i ≤ k. The setW is called a connected local resolving set of G if the representations of every two adjacent vertices of G with respect to W are distinct and the subgraph 〈W〉 induced by W is connected. A connected local resolving set of G of minimum cardinality is a connected local basis of G. The connected local dimension cld(G) of G is the cardinality of a connected local basis of G. In this paper, the connected local dimensions of some well-known graphs are determined. We study the relationship between connected local bases and local bases in a connected graph, and also present some realization results. © 2022 World Scientific and Engineering Academy and Society. All rights reserved. |
URI: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122803134&doi=10.37394%2f23206.2022.21.1&partnerID=40&md5=9f583fdc14f587394206b994813bf400 https://ir.swu.ac.th/jspui/handle/123456789/27563 |
ISSN: | 11092769 |
Appears in Collections: | Scopus 2022 |
Files in This Item:
There are no files associated with this item.
Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.