Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/27455
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKousathanas A.
dc.contributor.authorPairo-Castineira E.
dc.contributor.authorRawlik K.
dc.contributor.authorStuckey A.
dc.contributor.authorOdhams C.A.
dc.contributor.authorWalker S.
dc.contributor.authorRussell C.D.
dc.contributor.authorMalinauskas T.
dc.contributor.authorWu Y.
dc.contributor.authorMillar J.
dc.contributor.authorShen X.
dc.contributor.authorElliott K.S.
dc.contributor.authorGriffiths F.
dc.contributor.authorOosthuyzen W.
dc.contributor.authorMorrice K.
dc.contributor.authorKeating S.
dc.contributor.authorWang B.
dc.contributor.authorRhodes D.
dc.contributor.authorKlaric L.
dc.contributor.authorZechner M.
dc.contributor.authorParkinson N.
dc.contributor.authorSiddiq A.
dc.contributor.authorGoddard P.
dc.contributor.authorDonovan S.
dc.contributor.authorMoahmed H.S.
dc.contributor.authorShahin D.
dc.date.accessioned2022-12-14T03:17:23Z-
dc.date.available2022-12-14T03:17:23Z-
dc.date.issued2022
dc.identifier.issn280836
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85134361378&doi=10.1038%2fs41586-022-04576-6&partnerID=40&md5=845a2fd80b20881bd8a33a620199f8d0
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/27455-
dc.description.abstractCritical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease. © 2022, The Author(s).
dc.languageen
dc.publisherNature Research
dc.titleWhole-genome sequencing reveals host factors underlying critical COVID-19
dc.typeArticle
dc.rights.holderScopus
dc.identifier.bibliograpycitationTheory and Practice in Language Studies. Vol 12, No.8 (2022), p.1616-1621
dc.identifier.doi10.1038/s41586-022-04576-6
Appears in Collections:Scopus 2022

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.