Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/17475
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMisra K.C.
dc.contributor.authorPongprasert S.
dc.date.accessioned2022-03-10T13:17:12Z-
dc.date.available2022-03-10T13:17:12Z-
dc.date.issued2021
dc.identifier.issn2714132
dc.identifier.other2-s2.0-85107401377
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/17475-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85107401377&doi=10.1090%2fconm%2f768%2f15468&partnerID=40&md5=3a07c779307e1e4698b581c721165677
dc.description.abstractLet g be an affine Lie algebra with index set I = {0, 1, 2, ···,n}. It is conjectured in [12] that for each Dynkin node k ∈ I\{0} theaffineLiealgebra g has a positive geometric crystal whose ultra-discretization is isomorphic to the limit of a coherent family of perfect crystals for the Langland dual gL.In this paper we show that at the spin node k = 6, the family of perfect crystals given in [6] form a coherent family and show that its limit B6,∞ is isomorphic to the ultra-discretization of the positive geometric crystal we constructed in [18] for the affine Lie algebra D(1) 6 which proves the conjecture in this case. © 2021 American Mathematical Society.
dc.languageen
dc.titleUltra-discretization of D(1) 6-geometric crystal at the spin node
dc.typeBook Chapter
dc.rights.holderScopus
dc.identifier.bibliograpycitationContemporary Mathematics. Vol 768, No. (2021), p.271-304
dc.identifier.doi10.1090/conm/768/15468
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.