Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/17368
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSriphan S.
dc.contributor.authorCharoonsuk T.
dc.contributor.authorKhaisaat S.
dc.contributor.authorSawanakarn O.
dc.contributor.authorPharino U.
dc.contributor.authorPhunpruch S.
dc.contributor.authorMaluangnont T.
dc.contributor.authorVittayakorn N.
dc.date.accessioned2022-03-10T13:16:57Z-
dc.date.available2022-03-10T13:16:57Z-
dc.date.issued2021
dc.identifier.issn9574484
dc.identifier.other2-s2.0-85101477439
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/17368-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85101477439&doi=10.1088%2f1361-6528%2fabd8ae&partnerID=40&md5=9558ad8816e34b07f3afa57bfe804176
dc.description.abstractIn this paper, titanium dioxide nanosheets (Ti0.91O2 NSs) were incorporated into bacterial cellulose (BC) film for dielectric property tuning while maintaining the flexibility of the resulting composite paper. By taking advantage of the improved dielectric constant, the nanosheets/BC composites were employed as capacitive sensors. The fabricated devices showed the highest sensing performance of ∼2.44 × 10-3 kPa-1 from 0 to 30 N when incorporating as little as 3 vol% of Ti0.91O2 NSs (or ∼2 wt% Ti). Stable operation and high robustness of the sensor were demonstrated, where simple human motions could be efficiently monitored. This study provided a route for preparing flexible and low-cost BC composite paper for capacitive sensor. The strategy for enhancing the dielectric properties as well as sensing performances of the BC demonstrated herein will be essential for the future development of biocompatible, low-cost, and eco-friendly wearable electronics. © 2021 IOP Publishing Ltd.
dc.languageen
dc.subjectBiocompatibility
dc.subjectBoron carbide
dc.subjectCellulose
dc.subjectComposite materials
dc.subjectCosts
dc.subjectDielectric properties of solids
dc.subjectNanocomposite films
dc.subjectNanosheets
dc.subjectOxides
dc.subjectTitanium dioxide
dc.subjectBacterial cellulose
dc.subjectCellulose composites
dc.subjectEco-friendly
dc.subjectFabricated device
dc.subjectHigh robustness
dc.subjectHuman motions
dc.subjectSensing performance
dc.subjectStable operation
dc.subjectCapacitive sensors
dc.subjectCellulose
dc.subjectCosts
dc.subjectDielectric Constant
dc.subjectDielectric Properties
dc.subjectFilm
dc.subjectFlexibility
dc.subjectPaper
dc.subjectTitanium Dioxide
dc.subjectcellulose
dc.subjectnanomaterial
dc.subjecttitanium
dc.subjecttitanium dioxide
dc.subjectbacterium
dc.subjectchemistry
dc.subjectdevices
dc.subjectelectric capacitance
dc.subjectelectronic device
dc.subjectnanotechnology
dc.subjectpliability
dc.subjectsurface property
dc.subjectBacteria
dc.subjectCellulose
dc.subjectElectric Capacitance
dc.subjectNanostructures
dc.subjectNanotechnology
dc.subjectPliability
dc.subjectSurface Properties
dc.subjectTitanium
dc.subjectWearable Electronic Devices
dc.titleFlexible capacitive sensor based on 2D-titanium dioxide nanosheets/bacterial cellulose composite film
dc.typeArticle
dc.rights.holderScopus
dc.identifier.bibliograpycitationNanotechnology. Vol 32, No.15 (2021)
dc.identifier.doi10.1088/1361-6528/abd8ae
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.