Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/15521
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorนุวีย์ วิวัฒนวัฒนาth_TH
dc.contributor.authorสุภัคศจี ปลุกอร่ามth_TH
dc.contributor.authorสิปปภาส ทรัพย์สนองth_TH
dc.contributor.authorสุประวีณ์ สร้อยทองเจริญth_TH
dc.date.accessioned2021-06-24T08:56:20Z-
dc.date.available2021-06-24T08:56:20Z-
dc.date.issued2563-
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/15521-
dc.description.abstractLesion location is a critical information that must be reported by gastroenterologists when interpreting capsule endoscopy images. There are few studies on how deep learning models can be applied to classify the locations of gastrointestinal tract. Therefore, we aim to create a deep learning model for classifying the locations of gastrointestinal tract (i.e., esophagus, stomach, small bowel, and colon) based on capsule endoscopy images. Dataset of capsule endoscopy images (n = 723,681 images from 174 patients) was divided into training (n = 40,000) and testing (n = 683,674). The images were labeled into 4 organ locations (esophagus, stomach, small bowel, and colon). We applied the deep learning architecture (InceptionResnet V2) to the training dataset. Then, the performance of the trained model was externally validated using the testing dataset. The confusion matrix of the deep learning model, visualizing the performance of our algorithm. The model classified capsule endoscopy images into 4 classes with accuracy of 97.38%, precision of 89.25%, recall (sensitivity) of 94.07%, and f1- score of 94.91%. The average prediction time was 20 milliseconds per image. In addition, we have used ensemble for comparison and the results were slightly better with accuracy of 94.21%, precision of 97.41%, recall (sensitivity) of 94.22%, and f1-score of 95.39%. The deep learning model demonstrated an excellent classification performance, which can be used as a building block for the ultimate goal of creating a fully automated model for interpreting capsule endoscopy images.th_TH
dc.language.isothth_TH
dc.publisherภาควิชาวิทยาการคอมพิวเตอร์ มหาวิทยาลัยศรีนครินทรวิโรฒth_TH
dc.subjectการจำแนกอวัยวะth_TH
dc.subjectระบบทางเดินอาหารth_TH
dc.subjectโครงข่ายประสาทเทียมคอนโวลูชันth_TH
dc.subjectDigestive Organ Classificationth_TH
dc.subjectWireless Capsule Endoscopyth_TH
dc.subjectConvolutional Neural Networkth_TH
dc.titleการจำแนกภาพอวัยวะในระบบทางเดินอาหารจากกล้องแคปซูลไร้สายโดยใช้ โครงข่ายประสาทเทียมคอนโวลูชันth_TH
dc.title.alternativeDigestive Organ Classification from Wireless Capsule Endoscopy Images with Convolutional Neural Networkth_TH
dc.typeWorking Paperth_TH
Appears in Collections:ComSci-Senior Projects

Files in This Item:
File Description SizeFormat 
Sci_Supaksagee_P.pdf
  Restricted Access
4.06 MBPDFView/Open Request a copy
Sci_Supaksagee_P_Poster.pdf
  Restricted Access
99.5 MBPDFView/Open Request a copy


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.