Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/15434
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThaithae S.
dc.contributor.authorPunnim N.
dc.date.accessioned2021-04-05T04:34:05Z-
dc.date.available2021-04-05T04:34:05Z-
dc.date.issued2009
dc.identifier.issn3817032
dc.identifier.other2-s2.0-60749098731
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/15434-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-60749098731&partnerID=40&md5=d29fcdf7cf12ce5b6baf9d5c549a7050
dc.description.abstractA Hamiltonian walk in a connected graph G is a closed walk of minimum length which contains every vertex of G. The Hamiltonian number h(G) of a connected graph G is the length of a Hamiltonian walk in G. Let G(n) be the set of all connected graphs of order n, G(n, k = k) be the set of all graphs in G(n) having connectivity k = k, and h(n, k) = {h(G) : G ∈ G(n, k = k)}. We prove in this paper that for any pair of integers n and k with 1 ≤ k ≤ n - 1, there exist positive integers a := min(h; n, k) = min{h(G) : G ∈ G(n, k = k)} and b := max(h; n, k) = max{h(G) : G ∈ G(n, k = k)} such that h(n, k) = {x ∈ ℤ : a ≤ x ≤ b}. The values of min(h; n, k) and max(h; n, k) are obtained in all situations.
dc.titleThe Hamiltonian number of graphs with prescribed connectivity
dc.typeArticle
dc.rights.holderScopus
dc.identifier.bibliograpycitationArs Combinatoria. Vol 90, (2009), p.237-244
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.