Please use this identifier to cite or link to this item:
https://ir.swu.ac.th/jspui/handle/123456789/15434
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Thaithae S. | |
dc.contributor.author | Punnim N. | |
dc.date.accessioned | 2021-04-05T04:34:05Z | - |
dc.date.available | 2021-04-05T04:34:05Z | - |
dc.date.issued | 2009 | |
dc.identifier.issn | 3817032 | |
dc.identifier.other | 2-s2.0-60749098731 | |
dc.identifier.uri | https://ir.swu.ac.th/jspui/handle/123456789/15434 | - |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-60749098731&partnerID=40&md5=d29fcdf7cf12ce5b6baf9d5c549a7050 | |
dc.description.abstract | A Hamiltonian walk in a connected graph G is a closed walk of minimum length which contains every vertex of G. The Hamiltonian number h(G) of a connected graph G is the length of a Hamiltonian walk in G. Let G(n) be the set of all connected graphs of order n, G(n, k = k) be the set of all graphs in G(n) having connectivity k = k, and h(n, k) = {h(G) : G ∈ G(n, k = k)}. We prove in this paper that for any pair of integers n and k with 1 ≤ k ≤ n - 1, there exist positive integers a := min(h; n, k) = min{h(G) : G ∈ G(n, k = k)} and b := max(h; n, k) = max{h(G) : G ∈ G(n, k = k)} such that h(n, k) = {x ∈ ℤ : a ≤ x ≤ b}. The values of min(h; n, k) and max(h; n, k) are obtained in all situations. | |
dc.title | The Hamiltonian number of graphs with prescribed connectivity | |
dc.type | Article | |
dc.rights.holder | Scopus | |
dc.identifier.bibliograpycitation | Ars Combinatoria. Vol 90, (2009), p.237-244 | |
Appears in Collections: | Scopus 1983-2021 |
Files in This Item:
There are no files associated with this item.
Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.