Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/15265
Title: Bioaccessibility, biotransformation, and transport of α-mangostin from Garcinia mangostana (Mangosteen) using simulated digestion and Caco-2 human intestinal cells
Authors: Bumrungpert A.
Kalpravidh R.W.
Suksamrarn S.
Chaivisuthangkura A.
Chitchumroonchokchai C.
Failla M.L.
Keywords: mangostin
xanthone derivative
article
bioavailability
cell strain CACO 2
chemistry
digestion
drug stability
fruit
Garcinia mangostana
high performance liquid chromatography
human
in vitro study
metabolism
micelle
transport at the cellular level
Biological Availability
Biological Transport
Caco-2 Cells
Chromatography, High Pressure Liquid
Digestion
Drug Stability
Fruit
Garcinia mangostana
Humans
Micelles
Xanthones
Garcinia mangostana
Issue Date: 2009
Abstract: α- and γ- Mangostin are the most abundant prenylated xanthones present in the fruit of the mangosteen tree. These compounds have been reported to possess numerous bioactivities that have provided the impetus for use of mangosteen products as nutraceuticals and in functional foods and dietary supplements. The health-promoting benefits of mangosteen are dependent on delivery of the xanthones to target tissues. Here, we used simulated digestion and Caco-2 cells to investigate the digestive stability, bioaccessibility, and intestinal cell transport of α- and γ- mangostin. Recovery of α- and γ-mangostin after simulated digestion of pericarp and fruit pulp exceeded 90%. Transfer of α-and γ-mangostin to the aqueous fraction during simulated digestion was efficient (65-74%) and dependent on bile salts suggesting that micellarization is required for optimal bioaccessibility of xanthones. Cell uptake of xanthones from micelles was dose dependent and intracellular concentrations were maximum by 1 h. Both free and phase II metabolites of α-mangostin were transported in the basolateral compartment and metabolites also effluxed into the apical chamber. Transepithelial transport of α-mangostin was increased during prandial-like compared to fasted conditions suggesting that absorption is enhanced by dietary fat. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
URI: https://ir.swu.ac.th/jspui/handle/123456789/15265
https://www.scopus.com/inward/record.uri?eid=2-s2.0-66749135984&doi=10.1002%2fmnfr.200800260&partnerID=40&md5=38a80c224e679d600c96354248303a08
ISSN: 16134125
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.