Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/15235
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTipsuwanporn V.
dc.contributor.authorPiyarat W.
dc.contributor.authorTarasantisuk C.
dc.date.accessioned2021-04-05T04:33:08Z-
dc.date.available2021-04-05T04:33:08Z-
dc.date.issued2002
dc.identifier.other2-s2.0-84961875402
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/15235-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84961875402&doi=10.1109%2fPCC.2002.998159&partnerID=40&md5=e11b4a07933efc9bda7143bd3af84807
dc.description.abstractThis paper proposes high performance with simultaneous online identification and control designed for brushless DC motor drives. The dynamics of the motor/load are modeled online and controlled using an artificial neural network (ANN) based identification and control scheme incorporating three multilayer feedforward neural networks that are trained online using the gradient descent training algorithm. The control of the direct and quadrature components of the stator current successfully tracked a wide variety of trajectories. The control strategy adapts to the uncertainties of motor/load dynamics, and, in addition, learns their inherent nonlinearities. The use of feedforward neural networks makes the drives system robust, accurate and insensitive to parameter variations. © 2002 IEEE.
dc.subjectAC motors
dc.subjectControl nonlinearities
dc.subjectDC motors
dc.subjectElectric drives
dc.subjectElectric machine control
dc.subjectElectric motors
dc.subjectFeedforward neural networks
dc.subjectMultilayer neural networks
dc.subjectNeural networks
dc.subjectBrushless dc motor drives
dc.subjectControl schemes
dc.subjectControl strategies
dc.subjectGradient descent training
dc.subjectMultilayer feedforward neural networks
dc.subjectOn-line identification
dc.subjectQuadrature components
dc.subjectStator currents
dc.subjectBrushless DC motors
dc.titleIdentification and control of brushless DC motors using on-line trained artificial neural networks
dc.typeConference Paper
dc.rights.holderScopus
dc.identifier.bibliograpycitationProceedings of the Power Conversion Conference-Osaka 2002, PCC-Osaka 2002. Vol 3, (2002), p.1290-1294
dc.identifier.doi10.1109/PCC.2002.998159
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.