Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/15206
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPunnim N.
dc.date.accessioned2021-04-05T04:33:00Z-
dc.date.available2021-04-05T04:33:00Z-
dc.date.issued2002
dc.identifier.issn9110119
dc.identifier.other2-s2.0-0036978769
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/15206-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-0036978769&doi=10.1007%2fs003730200044&partnerID=40&md5=8203d1a064def25992a9b1a40edd7f03
dc.description.abstractWe prove that if G runs over the set of graphs with a fixed degree sequence d, then the values Χ(G) of the function chromatic number completely cover a line segment [a, b] of positive integers. Thus for an arbitrary graphical sequence d, two invariants minΧ(d) := a and maxΧ(d) := b naturally arise. For a regular graphical sequence d = rn := (r, r,...,r) where r is the degree and n is the number of vertices, the exact values of a and b are found in all situations, except the case where n and r are both even and n < 2r.
dc.titleDegree sequences and chromatic numbers of graphs
dc.typeArticle
dc.rights.holderScopus
dc.identifier.bibliograpycitationGraphs and Combinatorics. Vol 18, No.3 (2002), p.597-603
dc.identifier.doi10.1007/s003730200044
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.