Please use this identifier to cite or link to this item:
https://ir.swu.ac.th/jspui/handle/123456789/15206
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Punnim N. | |
dc.date.accessioned | 2021-04-05T04:33:00Z | - |
dc.date.available | 2021-04-05T04:33:00Z | - |
dc.date.issued | 2002 | |
dc.identifier.issn | 9110119 | |
dc.identifier.other | 2-s2.0-0036978769 | |
dc.identifier.uri | https://ir.swu.ac.th/jspui/handle/123456789/15206 | - |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036978769&doi=10.1007%2fs003730200044&partnerID=40&md5=8203d1a064def25992a9b1a40edd7f03 | |
dc.description.abstract | We prove that if G runs over the set of graphs with a fixed degree sequence d, then the values Χ(G) of the function chromatic number completely cover a line segment [a, b] of positive integers. Thus for an arbitrary graphical sequence d, two invariants minΧ(d) := a and maxΧ(d) := b naturally arise. For a regular graphical sequence d = rn := (r, r,...,r) where r is the degree and n is the number of vertices, the exact values of a and b are found in all situations, except the case where n and r are both even and n < 2r. | |
dc.title | Degree sequences and chromatic numbers of graphs | |
dc.type | Article | |
dc.rights.holder | Scopus | |
dc.identifier.bibliograpycitation | Graphs and Combinatorics. Vol 18, No.3 (2002), p.597-603 | |
dc.identifier.doi | 10.1007/s003730200044 | |
Appears in Collections: | Scopus 1983-2021 |
Files in This Item:
There are no files associated with this item.
Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.