Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/15105
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPunnim N.
dc.date.accessioned2021-04-05T04:32:39Z-
dc.date.available2021-04-05T04:32:39Z-
dc.date.issued2005
dc.identifier.issn3029743
dc.identifier.other2-s2.0-23944515721
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/15105-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-23944515721&doi=10.1007%2f978-3-540-30540-8_16&partnerID=40&md5=7450f067eb0c617c29f4bb5f28f26c01
dc.description.abstractFor a graph G, a subset S ⊆ V(G), is said to be a decycling set of G if if G \S is acyclic. The cardinality of smallest decycling set of G is called the decycling number of G and it is denoted by φ(G). Bau and Beineke posed the following problems: Which cubic graphs G with |G |= 2n satisfy φ(G) = [n+1/2]? In this paper, we give an answer to this problem. © Springer-Verlag Berlin Heidelberg 2005.
dc.subjectCombinatorial mathematics
dc.subjectComputational geometry
dc.subjectComputer science
dc.subjectEdge detection
dc.subjectDisjoint edges
dc.subjectGraph drawing
dc.subjectJordan arcs
dc.subjectVertices
dc.subjectGraph theory
dc.titleThe decycling number of cubic graphs
dc.typeConference Paper
dc.rights.holderScopus
dc.identifier.bibliograpycitationLecture Notes in Computer Science. Vol 3330, (2005), p.141-145
dc.identifier.doi10.1007/978-3-540-30540-8_16
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.