Please use this identifier to cite or link to this item:
https://ir.swu.ac.th/jspui/handle/123456789/15105
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Punnim N. | |
dc.date.accessioned | 2021-04-05T04:32:39Z | - |
dc.date.available | 2021-04-05T04:32:39Z | - |
dc.date.issued | 2005 | |
dc.identifier.issn | 3029743 | |
dc.identifier.other | 2-s2.0-23944515721 | |
dc.identifier.uri | https://ir.swu.ac.th/jspui/handle/123456789/15105 | - |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-23944515721&doi=10.1007%2f978-3-540-30540-8_16&partnerID=40&md5=7450f067eb0c617c29f4bb5f28f26c01 | |
dc.description.abstract | For a graph G, a subset S ⊆ V(G), is said to be a decycling set of G if if G \S is acyclic. The cardinality of smallest decycling set of G is called the decycling number of G and it is denoted by φ(G). Bau and Beineke posed the following problems: Which cubic graphs G with |G |= 2n satisfy φ(G) = [n+1/2]? In this paper, we give an answer to this problem. © Springer-Verlag Berlin Heidelberg 2005. | |
dc.subject | Combinatorial mathematics | |
dc.subject | Computational geometry | |
dc.subject | Computer science | |
dc.subject | Edge detection | |
dc.subject | Disjoint edges | |
dc.subject | Graph drawing | |
dc.subject | Jordan arcs | |
dc.subject | Vertices | |
dc.subject | Graph theory | |
dc.title | The decycling number of cubic graphs | |
dc.type | Conference Paper | |
dc.rights.holder | Scopus | |
dc.identifier.bibliograpycitation | Lecture Notes in Computer Science. Vol 3330, (2005), p.141-145 | |
dc.identifier.doi | 10.1007/978-3-540-30540-8_16 | |
Appears in Collections: | Scopus 1983-2021 |
Files in This Item:
There are no files associated with this item.
Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.