Please use this identifier to cite or link to this item:
https://ir.swu.ac.th/jspui/handle/123456789/15063
ชื่อเรื่อง: | Decycling regular graphs |
ผู้แต่ง: | Punnim N. |
วันที่เผยแพร่: | 2005 |
บทคัดย่อ: | For a graph G and S ⊆ V(G), if G - S is acyclic, then S is said to be a decycling set of G. The cardinality of the smallest decycling set of G is called the decycling number of G and is denoted by φ(G). We prove in this paper that if G runs over the set of graphs with a fixed degree sequence d, then the values φ(G) completely cover a line segment [a, b] of positive integers. Let R(d) be the class of all graphs having degree sequence d. For an arbitrary graphic degree sequence d, two invariants a:= min(φ,d) = min{φ(G): G ∈ R(d)} and b:= max(φ, d) = max{φ(G): G ∈ R(d)}, arise naturally. For a regular graphic degree sequence d = rn:= (r, r,..., r), where r is the vertex degree and n is the order of the graph, the exact value of min(φ, rn) and max(φ, rn) are found in all situations. As an application, we can find all cubic graphs of order 2n having the smallest decycling number. |
URI: | https://ir.swu.ac.th/jspui/handle/123456789/15063 https://www.scopus.com/inward/record.uri?eid=2-s2.0-27944488332&partnerID=40&md5=3d574df32e0dfd12a286b624e05ac1ad |
ISSN: | 10344942 |
Appears in Collections: | Scopus 1983-2021 |
Files in This Item:
There are no files associated with this item.
Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.