Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/14907
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPunnim N.
dc.date.accessioned2021-04-05T04:32:05Z-
dc.date.available2021-04-05T04:32:05Z-
dc.date.issued2007
dc.identifier.issn3029743
dc.identifier.other2-s2.0-49949093746
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/14907-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-49949093746&doi=10.1007%2f978-3-540-70666-3_16&partnerID=40&md5=4bb3bd581f50ccd0175659c93add4091
dc.description.abstractBau and Beineke [2] asked the following questions: 1 Which cubic graphs G of order 2n have decycling number ? 1 Which cubic planar graphs G of order 2n have decycling number ? We answered the first question in [10]. In this paper we prove that if is the class of all connected cubic planar graphs of order 2n and , then there exist integers a n and b n such that there exists a graph with φ(G) = c if and only if c is an integer satisfying a n ≤ c ≤ b n . We also find all corresponding integers a n and b n . In addition, we prove that if is the class of all connected cubic planar graphs of order 2n with decycling number and , then there exists a sequence of switchings σ 1, σ 2, ..., σ t such that for every i=1, 2, ..., t-1, and . © 2007 Springer-Verlag Berlin Heidelberg.
dc.subjectGeometry
dc.subjectTopology
dc.subjectCombinatorics
dc.subjectCubic graphs
dc.subjectDiscrete geometry
dc.subjectPlanar graphs
dc.subjectTianjin , China
dc.subjectGraph theory
dc.titleThe Decycling Number of Cubic Planar Graphs
dc.typeConference Paper
dc.rights.holderScopus
dc.identifier.bibliograpycitationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 4381 LNCS, (2007), p.149-161
dc.identifier.doi10.1007/978-3-540-70666-3_16
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.