Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/14888
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThaithae S.
dc.contributor.authorPunnim N.
dc.date.accessioned2021-04-05T04:32:03Z-
dc.date.available2021-04-05T04:32:03Z-
dc.date.issued2008
dc.identifier.issn3029743
dc.identifier.other2-s2.0-70349929486
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/14888-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-70349929486&doi=10.1007%2f978-3-540-89550-3_23&partnerID=40&md5=1a057405b6f6e578cca0cf70e9d00812
dc.description.abstractA Hamiltonian walk in a connected graph G of order n is a closed spanning walk of minimum length in G. The Hamiltonian number h(G) of a connected graph G is the length of a Hamiltonian walk in G. Thus h may be considered as a measure of how far a given graph is from being Hamiltonian. We prove that if G runs over the set of connected cubic graphs of order n and n ≠ 14then the values h(G) completely cover a line segment [a,b] of positive integers. For an even integer n ≥ 4, let C(3n) be the set of all connected cubic graphs of order n. We define min(h,3n = min{h(G): G ∈ C(3n)} and max(h, 3n = max{h(G):G ∈ C(3n)}. Thus for an even integer n ≥ 4, the two invariants min (h, 3n ) and max (h,3 n ) naturally arise. Evidently, min (h, 3n ) = n. The exact values of max (h, 3n ) are obtained in all situations. © 2008 Springer Berlin Heidelberg.
dc.subjectComputation theory
dc.subjectComputational geometry
dc.subjectDifferential equations
dc.subjectHamiltonians
dc.subjectConnected graph
dc.subjectCubic graph
dc.subjectHamiltonian numbers
dc.subjectInteger-N
dc.subjectLine segment
dc.subjectPositive integers
dc.subjectGraph theory
dc.titleThe hamiltonian number of cubic graphs
dc.typeConference Paper
dc.rights.holderScopus
dc.identifier.bibliograpycitationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 4535 LNCS, No. (2008), p.213-223
dc.identifier.doi10.1007/978-3-540-89550-3_23
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.