Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/14878
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOkamoto F.
dc.contributor.authorZhang P.
dc.contributor.authorSaenpholphat V.
dc.date.accessioned2021-04-05T04:32:02Z-
dc.date.available2021-04-05T04:32:02Z-
dc.date.issued2008
dc.identifier.issn114642
dc.identifier.other2-s2.0-44349154184
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/14878-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-44349154184&doi=10.1007%2fs10587-008-0016-9&partnerID=40&md5=7e0038c0b43889d07e66d1f42bfc6101
dc.description.abstractFor a nontrivial connected graph G of order n and a linear ordering s: v1, v2,...,vn of vertices of G, define d(s) = ∑i=1n-1d(vi,vi+1). The traceable number t(G) of a graph G is t(G) = min{d(s)} and the upper traceable number t+(G) of G is t+(G) = max{d(s)}, where the minimum and maximum are taken over all linear orderings s of vertices of G. We study upper traceable numbers of several classes of graphs and the relationship between the traceable number and upper traceable number of a graph. All connected graphs G for which t+(G) - t(G) = 1 are characterized and a formula for the upper traceable number of a tree is established. © 2008 Mathematical Institute, Academy of Sciences of Czech Republic.
dc.titleThe upper traceable number of a graph
dc.typeArticle
dc.rights.holderScopus
dc.identifier.bibliograpycitationCzechoslovak Mathematical Journal. Vol 58, No.1 (2008), p.271-287
dc.identifier.doi10.1007/s10587-008-0016-9
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.