Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/14547
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRodamporn S.
dc.contributor.authorHarris N.R.
dc.contributor.authorBeeby S.P.
dc.contributor.authorBoltryk R.J.
dc.contributor.authorSanchez-Elsner T.
dc.date.accessioned2021-04-05T03:35:32Z-
dc.date.available2021-04-05T03:35:32Z-
dc.date.issued2011
dc.identifier.issn189294
dc.identifier.other2-s2.0-79952934869
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/14547-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-79952934869&doi=10.1109%2fTBME.2010.2089521&partnerID=40&md5=229e84345021a76604100d233fc834b6
dc.description.abstractSonoporation has been shown to have an important role in biotechnology for gene therapy and drug delivery. This paper presents a novel microfluidic sonoporation system that achieves high rates of cell transfection and cell viability by operating the sonoporation chamber at resonance. The paper presents a theoretical analysis of the resonant sonoporation chamber design, which achieves sonoporation by forming an ultrasonic standing wave across the chamber. A piezoelectric transducer (PZT 26) is used to generate the ultrasound and the different material thicknesses have been identified to give a chamber resonance at 980 kHz. The efficiency of the sonoporation system was determined experimentally under a range of sonoporation conditions and different exposures time (5, 10, 15, and 20 s, respectively) using HeLa cells and plasmid (peGFP-N1). The experimental results achieve a cell transfection efficiency of 68.9% (analysis of variance, ANOVA, p lt; 0.05) at the resonant frequency of 980 kHz at 100 Vp-p (19.5 MPa) with a cell viability of 77% after 10 s of insonication. © 2011 IEEE.
dc.subjectAt resonance
dc.subjectCell transfection
dc.subjectCell viability
dc.subjectChamber design
dc.subjectHeLa cell
dc.subjectHigh rate
dc.subjectMaterial thickness
dc.subjectPZT
dc.subjectResonant frequencies
dc.subjectsonoporation
dc.subjectultrasonic standing wave
dc.subjectUltrasonic standing waves
dc.subjectDrug delivery
dc.subjectElastic waves
dc.subjectGene therapy
dc.subjectGenetic engineering
dc.subjectNatural frequencies
dc.subjectRegression analysis
dc.subjectTransducers
dc.subjectUltrasonic waves
dc.subjectWaves
dc.subjectUltrasonics
dc.subjectplasmid DNA
dc.subjectarticle
dc.subjectcell viability
dc.subjectcontrolled study
dc.subjectfemale
dc.subjectgenetic transfection
dc.subjectHeLa cell
dc.subjecthuman
dc.subjecthuman cell
dc.subjecthuman cell culture
dc.subjectionization chamber
dc.subjectpiezoelectric transducer
dc.subjectpiezoelectricity
dc.subjectplasmid
dc.subjectsonoporation
dc.subjecttransducer
dc.subjectultrasound
dc.subjectElectroporation
dc.subjectEquipment Design
dc.subjectEquipment Failure Analysis
dc.subjectHela Cells
dc.subjectHumans
dc.subjectMicrofluidic Analytical Techniques
dc.subjectSonication
dc.subjectTransfection
dc.titleHeLa cell transfection using a novel sonoporation system
dc.typeArticle
dc.rights.holderScopus
dc.identifier.bibliograpycitationIEEE Transactions on Biomedical Engineering. Vol 58, No.4 (2011), p.927-934
dc.identifier.doi10.1109/TBME.2010.2089521
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.