Please use this identifier to cite or link to this item:
https://ir.swu.ac.th/jspui/handle/123456789/14497
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Da Fonseca C.M. | |
dc.contributor.author | Saenpholphat V. | |
dc.contributor.author | Zhang P. | |
dc.date.accessioned | 2021-04-05T03:35:11Z | - |
dc.date.available | 2021-04-05T03:35:11Z | - |
dc.date.issued | 2011 | |
dc.identifier.issn | 3817032 | |
dc.identifier.other | 2-s2.0-79959386093 | |
dc.identifier.uri | https://ir.swu.ac.th/jspui/handle/123456789/14497 | - |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-79959386093&partnerID=40&md5=759d9e4930bd03cdfafe454073e77f6f | |
dc.description.abstract | Let G be a graph of order n and size m. A γ-labeling of G is a one-to-one function f : V(G) → {0,1,2,..., m} that induces a labeling f′ : E(G) → {1,2,..., m} of the edges of G defined by f′(e) = |f(u) -f(v)| for each edge e = uv of G. The value of a γ-labeling f is defined as val(f)= Σ f′(e). eεE(G) The γ-spectrum of a graph G is defined as spec(G) = {val(f) : f is a γ-labeling of G}. The γ-spectra of paths, cycles, and complete graphs are determined. | |
dc.title | The γ-spectrum of a graph | |
dc.type | Article | |
dc.rights.holder | Scopus | |
dc.identifier.bibliograpycitation | Ars Combinatoria. Vol 101, No. (2011), p.109-127 | |
Appears in Collections: | Scopus 1983-2021 |
Files in This Item:
There are no files associated with this item.
Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.