Please use this identifier to cite or link to this item:
https://ir.swu.ac.th/jspui/handle/123456789/14472
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Punnim N. | |
dc.contributor.author | Chantasartrassmee A. | |
dc.date.accessioned | 2021-04-05T03:35:01Z | - |
dc.date.available | 2021-04-05T03:35:01Z | - |
dc.date.issued | 2011 | |
dc.identifier.issn | 1611712 | |
dc.identifier.other | 2-s2.0-80052656856 | |
dc.identifier.uri | https://ir.swu.ac.th/jspui/handle/123456789/14472 | - |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052656856&doi=10.1155%2f2011%2f947151&partnerID=40&md5=714a8b3f87c390368ec5068b4b15ba12 | |
dc.description.abstract | Let G be a graph. The vertex (edge) arboricity of G denoted by a (G) (a 1 (G)) is the minimum number of subsets into which the vertex (edge) set of G can be partitioned so that each subset induces an acyclic subgraph. Let d be a graphical sequence and let R (d) be the class of realizations of d. We prove that if π∈{a, a1}, then there exist integers x (π) and y (π) such that d has a realization G with π(G) = z if and only if z is an integer satisfying x (π) < z < y (π). Thus, for an arbitrary graphical sequence d and π∈{a, a1}, the two invariants x (π) = min (π, d): = min { (G): G R (d) } and y (π) = max (π, d): = m a x {π G): G ∈ R (d) } naturally arise and hence (d): = {π(G): G ∈ R (d) } = { z ∈ ℤ: x (π)< z < y (π)}. We write d = rn: = (r, r, ⋯, r) for the degree sequence of an r -regular graph of order n. We prove that a1 (rn) = {(r + 1) / 2 }. We consider the corresponding extremal problem on vertex arboricity and obtain m in (a, rn) in all situations and max (a, rn) for all n > 2 r + 2. © 2011 Avapa Chantasartrassmee and Narong Punnim. | |
dc.title | An intermediate value theorem for the arboricities | |
dc.type | Article | |
dc.rights.holder | Scopus | |
dc.identifier.bibliograpycitation | International Journal of Mathematics and Mathematical Sciences. Vol 2011, No. (2011), p.- | |
dc.identifier.doi | 10.1155/2011/947151 | |
Appears in Collections: | Scopus 1983-2021 |
Files in This Item:
There are no files associated with this item.
Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.