Please use this identifier to cite or link to this item:
https://ir.swu.ac.th/jspui/handle/123456789/14450
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chantasartrassmee A. | |
dc.contributor.author | Punnim N. | |
dc.date.accessioned | 2021-04-05T03:34:50Z | - |
dc.date.available | 2021-04-05T03:34:50Z | - |
dc.date.issued | 2011 | |
dc.identifier.issn | 3029743 | |
dc.identifier.other | 2-s2.0-81255124124 | |
dc.identifier.uri | https://ir.swu.ac.th/jspui/handle/123456789/14450 | - |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-81255124124&doi=10.1007%2f978-3-642-24983-9_2&partnerID=40&md5=ba5cbcf617655945859cbccb8412982b | |
dc.description.abstract | Punnim proved in [6] that if G is an r-regular graph of order n, then its forest number is at most c, where (Equation Presented) He also proved that the bound is sharp. Let R(rn; c) be the class of all r-regular graphs of order n. We prove in this paper that if G, H ∈ R(rn; c), then there exists a sequence of switchings σ1, σ2,. .., σt such that for each i=1, 2,...,t, and G σ1σ2...σi ∈ R(rn; c) and H = G σ1σ2...σt. © 2011 Springer-Verlag. | |
dc.subject | Regular graphs | |
dc.subject | Computational geometry | |
dc.subject | Forestry | |
dc.subject | Graph theory | |
dc.subject | Graphic methods | |
dc.subject | Forestry | |
dc.subject | Geometry | |
dc.subject | Graphic Methods | |
dc.subject | Optimization | |
dc.title | Regular graphs with maximum forest number | |
dc.type | Conference Paper | |
dc.rights.holder | Scopus | |
dc.identifier.bibliograpycitation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 7033 LNCS, No. (2011), p.12-18 | |
dc.identifier.doi | 10.1007/978-3-642-24983-9_2 | |
Appears in Collections: | Scopus 1983-2021 |
Files in This Item:
There are no files associated with this item.
Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.