Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/14450
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChantasartrassmee A.
dc.contributor.authorPunnim N.
dc.date.accessioned2021-04-05T03:34:50Z-
dc.date.available2021-04-05T03:34:50Z-
dc.date.issued2011
dc.identifier.issn3029743
dc.identifier.other2-s2.0-81255124124
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/14450-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-81255124124&doi=10.1007%2f978-3-642-24983-9_2&partnerID=40&md5=ba5cbcf617655945859cbccb8412982b
dc.description.abstractPunnim proved in [6] that if G is an r-regular graph of order n, then its forest number is at most c, where (Equation Presented) He also proved that the bound is sharp. Let R(rn; c) be the class of all r-regular graphs of order n. We prove in this paper that if G, H ∈ R(rn; c), then there exists a sequence of switchings σ1, σ2,. .., σt such that for each i=1, 2,...,t, and G σ1σ2...σi ∈ R(rn; c) and H = G σ1σ2...σt. © 2011 Springer-Verlag.
dc.subjectRegular graphs
dc.subjectComputational geometry
dc.subjectForestry
dc.subjectGraph theory
dc.subjectGraphic methods
dc.subjectForestry
dc.subjectGeometry
dc.subjectGraphic Methods
dc.subjectOptimization
dc.titleRegular graphs with maximum forest number
dc.typeConference Paper
dc.rights.holderScopus
dc.identifier.bibliograpycitationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 7033 LNCS, No. (2011), p.12-18
dc.identifier.doi10.1007/978-3-642-24983-9_2
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.