Please use this identifier to cite or link to this item:
https://ir.swu.ac.th/jspui/handle/123456789/14340
ชื่อเรื่อง: | Site-specific regulation of ion transport by prolactin in rat colon epithelium |
ผู้แต่ง: | Deachapunya C. Poonyachoti S. Krishnamra N. |
Keywords: | amiloride apamin bumetanide carbachol chromanol 293B clotrimazole ethylene glycol 1,2 bis(2 aminophenyl) ether n,n,n',n' tetraacetic acid glibenclamide isobutylmethylxanthine n benzyl 2 cyano 3 (3,4 dihydroxyphenyl)acrylamide phosphatidylinositol 3 kinase prolactin quinidine sodium potassium chloride cotransporter tetrylammonium wortmannin animal experiment animal tissue article ascending colon calcium mobilization colon mucosa concentration response controlled study descending colon electrolyte transport electrophysiology ion transport male nonhuman priority journal rat signal transduction sodium absorption transverse colon Animals Chloride Channels Chlorides Colon Enzyme Inhibitors Intestinal Mucosa Ion Transport Male MAP Kinase Signaling System Potassium Potassium Channel Blockers Prolactin Rats Rats, Wistar Sodium Channel Blockers Tyrphostins |
วันที่เผยแพร่: | 2012 |
บทคัดย่อ: | The effect of prolactin (PRL) on ion transport across the rat colon epithelium was investigated using Ussing chamber technique. PRL (1 μg/ml) induced a sustained decrease in short-circuit current (I sc) in the distal colon with an EC 50 value of 100 ng/ml and increased I sc in the proximal colon with an EC 50 value of 49 ng/ml. In the distal colon, the PRL-induced decrease in I sc was not affected by Na + channel blocker amiloride or Cl - channel blockers, NPPB, DPC, or DIDS, added mucosally. However, the response was inhibited by mucosal application of K + channel blockers glibenclamide, quinidine, and chromanol 293B, whereas other K + channel blockers, Ba 2+, tetraethylammonium, clotrimazole, and apamin, failed to have effects. The PRL-induced decrease in I sc was also inhibited by Na +-K +-2Cl - transporter inhibitor bumetanide, Ba 2+, and chromanol 293B applied serosally. In the transverse and proximal colon, the PRL-induced increase in I sc was suppressed by DPC, glibenclamide, and bumetanide, but not by NPPB, DIDS, or amiloride. The PRL-induced changes in I sc in both distal and proximal colon were abolished by JAK2 inhibitor AG490, but not BAPTA-AM, the Ca 2+ chelating agent, or phosphatidylinositol 3-kinase inhibitor wortmannin. These results suggest a segment-specific effect of PRL in rat colon, by activation of K + secretion in the distal colon and activation of Cl - secretion in the transverse and proximal colon. Both PRL actions are mediated by JAK-STAT-dependent pathway, but not phosphatidylinositol 3-kinase pathway or Ca 2+ mobilization. These findings suggest a role of PRL in the regulation of electrolyte transport in mammalian colon. © 2012 the American Physiological Society. |
URI: | https://ir.swu.ac.th/jspui/handle/123456789/14340 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861141161&doi=10.1152%2fajpgi.00143.2011&partnerID=40&md5=d81c03736704ab3359dde25464f821d6 |
ISSN: | 1931857 |
Appears in Collections: | Scopus 1983-2021 |
Files in This Item:
There are no files associated with this item.
Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.