Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/14274
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChittasupho C.
dc.date.accessioned2021-04-05T03:33:57Z-
dc.date.available2021-04-05T03:33:57Z-
dc.date.issued2012
dc.identifier.issn20415990
dc.identifier.other2-s2.0-84867940749
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/14274-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84867940749&doi=10.4155%2ftde.12.99&partnerID=40&md5=7dacdc19cbff1ce1c4410b6d7493ae1c
dc.description.abstractMultivalent interactions of biological molecules play an important role in many biochemical events. A multivalent ligand comprises of multiple copies of ligands conjugated to scaffolds, allowing the simultaneous binding of multivalent ligands to multiple binding sites or receptors. Many research groups have successfully designed and synthesized multivalent ligands to increase the binding affinity, avidity and specificity of the ligand to the receptor. A multimeric ligand is a promising option for the specific treatment of diseases. In this review, the factors affecting multivalent interactions, including the size and shape of the ligand, geometry and an arrangement of ligands on the scaffold, linker length, thermodynamic, and kinetics of the interactions are discussed. Examples of the multivalent ligand applications for therapeutic delivery are also summarized. © 2012 Future Science Ltd.
dc.subjectantibody
dc.subjectantibody conjugate
dc.subjectarginylglycylaspartic acid
dc.subjectcancer vaccine
dc.subjectcarbohydrate
dc.subjectcephalosporin
dc.subjectcisplatin
dc.subjectcytotoxic T lymphocyte antigen 4 antibody
dc.subjectdendrimer
dc.subjectdoxorubicin
dc.subjectligand
dc.subjectmacrogol
dc.subjectmultivalent ligand
dc.subjectnanoparticle
dc.subjectpeptide
dc.subjectpolyamidoamine
dc.subjectpolyglactin
dc.subjectpolymer
dc.subjectsingle chain fragment variable antibody
dc.subjecttumor antigen
dc.subjecttumor vaccine
dc.subjectunclassified drug
dc.subjectvery late activation antigen 4
dc.subjectvitronectin receptor
dc.subjectautoimmune disease
dc.subjectbinding affinity
dc.subjectbinding site
dc.subjectbreast cancer
dc.subjectcancer immunotherapy
dc.subjectconcentration (parameters)
dc.subjectconformational transition
dc.subjectcontrolled drug release
dc.subjectdensity
dc.subjectdrug delivery system
dc.subjectdrug half life
dc.subjectencapsulation
dc.subjectenthalpy
dc.subjectentropy
dc.subjecthuman
dc.subjectIC 50
dc.subjectimmunogenicity
dc.subjectligand binding
dc.subjectmolecular interaction
dc.subjectmolecularly targeted therapy
dc.subjectnonhuman
dc.subjectpriority journal
dc.subjectprotein multimerization
dc.subjectreview
dc.subjectT lymphocyte activation
dc.subjectthermodynamics
dc.subjectAnimals
dc.subjectBinding Sites
dc.subjectDrug Delivery Systems
dc.subjectDrug Design
dc.subjectHumans
dc.subjectLigands
dc.subjectThermodynamics
dc.titleMultivalent ligand: Design principle for targeted therapeutic delivery approach
dc.typeReview
dc.rights.holderScopus
dc.identifier.bibliograpycitationTherapeutic Delivery. Vol 3, No.10 (2012), p.1171-1187
dc.identifier.doi10.4155/tde.12.99
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.