Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/13951
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLapchinda W.
dc.contributor.authorPunnim N.
dc.contributor.authorPabhapote N.
dc.date.accessioned2021-04-05T03:32:44Z-
dc.date.available2021-04-05T03:32:44Z-
dc.date.issued2013
dc.identifier.issn3029743
dc.identifier.other2-s2.0-84891844902
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/13951-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84891844902&doi=10.1007%2f978-3-642-45281-9_10&partnerID=40&md5=bfe53c8452388eb0dbb19536f466b917
dc.description.abstractA group divisible design GDD(v = 1 + n + n, 3, 3, λ1, λ2) is an ordered pair (V, B) where V is an (1 + n + n)-set of symbols and B is a collection of 3-subsets (called blocks) of V satisfying the following properties: the (1 + n + n)-set is divided into 3 groups of sizes 1, n and n; each pair of symbols from the same group occurs in exactly λ1 blocks in B; and each pair of symbols from different groups occurs in exactly λ2 blocks in B. Let λ1, λ2 be positive integers. Then the spectrum of λ1, λ2, denoted by Spec(λ 1, λ2), is defined by Spec(λ1, λ2) = {n ∈ ℕ : a GDD(v = 1 + n + n, 3, 3, λ1, λ2) exists}. We found in [10] the spectrum Spec(λ1, λ2) provided that λ1 ≥ λ2 in all situations. We find in this paper Spec(λ1, λ2) when λ1 < λ2 in all situations. © 2013 Springer-Verlag.
dc.subjectAssociate class
dc.subjectGroup divisible design
dc.subjectOrdered pairs
dc.subjectPositive integers
dc.subjectArtificial intelligence
dc.subjectComputer science
dc.subjectComputers
dc.subjectComputational geometry
dc.titleGDDs with two associate classes and with three groups of sizes 1, n, n and λ1 < λ2
dc.typeConference Paper
dc.rights.holderScopus
dc.identifier.bibliograpycitationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 8296 LNCS, (2013), p.101-109
dc.identifier.doi10.1007/978-3-642-45281-9_10
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.