Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/13950
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCharoenpanitseri W.
dc.contributor.authorPunnim N.
dc.contributor.authorUiyyasathian C.
dc.date.accessioned2021-04-05T03:32:44Z-
dc.date.available2021-04-05T03:32:44Z-
dc.date.issued2013
dc.identifier.issn3029743
dc.identifier.other2-s2.0-84893108183
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/13950-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84893108183&doi=10.1007%2f978-3-642-45281-9_4&partnerID=40&md5=969fcc9745438385f1e1b33804c4b2c2
dc.description.abstractIn 2003, Fitzpatrick and MacGillivray proved that every complete bipartite graph with fourteen vertices except K7,7 is 3-choosable and there is the unique 3-list assignment L up to renaming the colors such that K 7,7 is not L-colorable. We present our strategies which can be applied to obtain another proof of their result. These strategies are invented to claim a stronger result that every complete bipartite graph with fifteen vertices except K7,8 is 3-choosable. We also show all 3-list assignments L such that K7,8 is not L-colorable. © 2013 Springer-Verlag.
dc.subjectBipartite graphs
dc.subjectChoosability
dc.subjectComplete bipartite graphs
dc.subjectFitzpatrick
dc.subjectList coloring
dc.subjectGraph theory
dc.subjectComputational geometry
dc.titleOn non 3-choosable bipartite graphs
dc.typeConference Paper
dc.rights.holderScopus
dc.identifier.bibliograpycitationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 8296 LNCS, (2013), p.42-56
dc.identifier.doi10.1007/978-3-642-45281-9_4
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.