Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/13743
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAndrews E.
dc.contributor.authorBi Z.
dc.contributor.authorJohnston D.
dc.contributor.authorLumduanhom C.
dc.contributor.authorZhang P.
dc.date.accessioned2021-04-05T03:26:10Z-
dc.date.available2021-04-05T03:26:10Z-
dc.date.issued2018
dc.identifier.issn3153681
dc.identifier.other2-s2.0-85045115558
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/13743-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85045115558&partnerID=40&md5=034f10c8d1c87fb345f8768fef0a636d
dc.description.abstractFor bipartite graphs F and H with Ramsey number R(F, H) = n and an integer k with 2 < k < n, the k-Ramsey number of F and H is the minimum order of a balanced complete k-partite graph G for which every red-blue coloring of G results in a subgraph of G isomorphic to F all of whose edges are colored red or a subgraph isomorphic to H all of whose edges are colored blue. In this work, we investigate the k-Ramsey numbers Rk(F}H) for certain stripes F and H (1-regular graphs) and for certain values of k. We also include a discussion of A:-Ramsey numbers of graphs that are not bipartite. © 2018 Utilitas Mathematica Publishing Inc. All rights reserved.
dc.titleOn k-Ramsey Numbers of Stripes
dc.typeArticle
dc.rights.holderScopus
dc.identifier.bibliograpycitationUtilitas Mathematica. Vol 106, (2018), p.233-249
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.