Please use this identifier to cite or link to this item:
https://ir.swu.ac.th/jspui/handle/123456789/13735
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sararnrakskul R.I. | |
dc.contributor.author | Pianskool S. | |
dc.date.accessioned | 2021-04-05T03:26:05Z | - |
dc.date.available | 2021-04-05T03:26:05Z | - |
dc.date.issued | 2015 | |
dc.identifier.issn | 13118080 | |
dc.identifier.other | 2-s2.0-84926659189 | |
dc.identifier.uri | https://ir.swu.ac.th/jspui/handle/123456789/13735 | - |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926659189&doi=10.12732%2fijpam.v101i1.3&partnerID=40&md5=ee07d1d590406aa29a53941df7f233c6 | |
dc.description.abstract | A hyperoperation ○ on a nonempty set H is a function from H x H into P∗(H) where P∗(H) is the set of all nonempty subset of H and (H, ○) is call a hypergroupoid. A hypergroupoid (H, ○) is called a semihypergroup if the hyperoperation ○ is associative. Thus, semihypergroups generalize semigroups. Moreover, if S is a semigroup; we can define a hyperoperation ○ on S in order to make (S, ○) a semihypergroup. In 2013, R.I. Sararnrakskul defined a hyperoperation ○ on the partial transformation semigroup P (X) to make a semihypergroup. In this paper, we define a regular equivalence relation ρon (P (X), ○) so that P (X)/ρ is a semihypergroup and then we studies some subsemihypergroup of P (X)/ρ. © 2015 Academic Publications, Ltd. | |
dc.title | Some regular equivalence relation on the semihypergroup of the partial transformation semigroup on a set and local subsemihypergroups with that regular equivalence relation | |
dc.type | Article | |
dc.rights.holder | Scopus | |
dc.identifier.bibliograpycitation | International Journal of Pure and Applied Mathematics. Vol 101, No.1 (2015), p.21-31 | |
dc.identifier.doi | 10.12732/ijpam.v101i1.3 | |
Appears in Collections: | Scopus 1983-2021 |
Files in This Item:
There are no files associated with this item.
Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.