Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/13504
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhemmani V.
dc.contributor.authorLumduanhom C.
dc.contributor.authorMuangloy S.
dc.contributor.authorMuanphet M.
dc.contributor.authorTipnuch K.
dc.date.accessioned2021-04-05T03:24:20Z-
dc.date.available2021-04-05T03:24:20Z-
dc.date.issued2016
dc.identifier.issn13118080
dc.identifier.other2-s2.0-84976370556
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/13504-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84976370556&doi=10.12732%2fijpam.v108i2.18&partnerID=40&md5=982a30587d012e2bf2bb9301859ff4d1
dc.description.abstractFor a graph G of size m ≥ 1 and edge-induced subgraphs F and H of size k where 1 ≤ k ≤ m, the subgraph H is said to be obtained from the subgraph F by an edge jump if there exist four distinct vertices u, v, w and x such that uv ∈ E(F), wx ∈ E(G) - E(F), and H = F - uv + wx. The k-jump graph Jk(G) is that graph whose vertices correspond to the edge-induced subgraphs of size k of G where two vertices F and H of Jk(G) are adjacent if and only if H can be obtained from F by an edge jump. All connected graphs G for whose J3(G) is planar are determined. © 2016 Academic Publications, Ltd.
dc.titleOn planarity of 3-jump graphs
dc.typeArticle
dc.rights.holderScopus
dc.identifier.bibliograpycitationInternational Journal of Pure and Applied Mathematics. Vol 108, No.2 (2016), p.451-466
dc.identifier.doi10.12732/ijpam.v108i2.18
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.