Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/13451
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPreedanan W.
dc.contributor.authorPhothisonothai M.
dc.contributor.authorSenavongse W.
dc.contributor.authorTantisatirapong S.
dc.date.accessioned2021-04-05T03:24:00Z-
dc.date.available2021-04-05T03:24:00Z-
dc.date.issued2016
dc.identifier.other2-s2.0-84966658983
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/13451-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84966658983&doi=10.1109%2fKST.2016.7440501&partnerID=40&md5=c6f91c2517dfef3d70a3f381a7826f2a
dc.description.abstractThis paper investigates automated detection of malaria parasites in images of Giemsa-stained thin blood films. We aim to determine parasitemia based on automatic segmentation, feature extraction and classification methods. Segmentation relies on adaptive thresholding and watershed methods. Statistical features are then computed for each cell and classified using SVM binary classifier. Accuracy of classification is validated based on the leave-one-out cross-validation technique. This processing pipeline is applied on total 15 images of Giemsa-stained thin blood films and yields 92.71% sensitivity, 97.35% specificity and 97.17% accuracy. © 2016 IEEE.
dc.subjectFeature extraction
dc.subjectImage segmentation
dc.subjectStatistical methods
dc.subjectAccuracy of classifications
dc.subjectAdaptive thresholding
dc.subjectAutomated detection
dc.subjectAutomatic segmentations
dc.subjectFeature extraction and classification
dc.subjectLeave-one-out cross validations
dc.subjectPlasmodium falciparum
dc.subjectStatistical features
dc.subjectBlood
dc.titleAutomated detection of plasmodium falciparum from Giemsa-stained thin blood films
dc.typeConference Paper
dc.rights.holderScopus
dc.identifier.bibliograpycitation2016 8th International Conference on Knowledge and Smart Technology, KST 2016. (2016), p.215-218
dc.identifier.doi10.1109/KST.2016.7440501
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.