Please use this identifier to cite or link to this item:
https://ir.swu.ac.th/jspui/handle/123456789/12981
Title: | Green analytical flow method for the determination of total sulfite in wine using membraneless gas-liquid separation with contactless conductivity detection |
Authors: | Chantipmanee N. Alahmad W. Sonsa-Ard T. Uraisin K. Ratanawimarnwong N. Mantim T. Nacapricha D. |
Keywords: | Wine Calibration equations Capacitively coupled Contactless conductivity detection Contactless conductivity detector Donor and acceptor Gas-liquid separation Lower limit of quantitations Simple modifications Gases |
Issue Date: | 2017 |
Abstract: | A green analytical flow method was developed for the determination of total sulfite in white wine. The method employs the membraneless vaporization (MBL-VP) technique for gas-sample separation allowing direct analysis of wine. Sulfite in an aliquot of sample was converted to SO2 gas via acidification. Dissolution of the gas into the water acceptor led to a change in the conductivity of the acceptor which was monitored using a 'capacitively coupled contactless conductivity detector' (C4D) flow cell. Only a minute amount of common acid (100 μL of 1.5 mol L-1 H2SO4) is used. The MBL-VP unit was incorporated into the flow system to separate the SO2 gas from the wine sample using the headspace above the donor and acceptor compartments as a virtual membrane. The method provides a linear working range (10-200 mg L-1 sulfite) which is suitable for most wines with calibration equation y = (0.056 ± 0.002)x + (1.10 ± 0.22) and r2 = 0.998. Sample throughput is 26 samples h-1. The lower limit of quantitation (LLOQ = 3SD of blank per slope) is 0.3 mg L-1 sulfite for 20 s diffusion time with good precision (%RSD = 0.8 for 100 mg L-1 sulfite, n = 10). We also present a simple modification of the MBL-VP unit by the addition of a third cone-shaped reservoir to provide two acceptor zones leading to improvement in sensitivity of more than three-fold without use of heating to enhance the rate of diffusion of SO2. © 2017 The Royal Society of Chemistry. |
URI: | https://ir.swu.ac.th/jspui/handle/123456789/12981 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033588951&doi=10.1039%2fc7ay01879g&partnerID=40&md5=6d86e75b16898bf74315d397750fbe5c |
ISSN: | 17599660 |
Appears in Collections: | Scopus 1983-2021 |
Files in This Item:
There are no files associated with this item.
Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.