Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/12945
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWin K.Y.
dc.contributor.authorChoomchuay S.
dc.contributor.authorHamamoto K.
dc.contributor.authorRaveesunthornkiat M.
dc.date.accessioned2021-04-05T03:21:52Z-
dc.date.available2021-04-05T03:21:52Z-
dc.date.issued2018
dc.identifier.issn20402295
dc.identifier.other2-s2.0-85054038862
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/12945-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85054038862&doi=10.1155%2f2018%2f9240389&partnerID=40&md5=ed4adf79d37605b2a2e8b81b2726d0b3
dc.description.abstractAutomated cell nuclei segmentation is the most crucial step toward the implementation of a computer-aided diagnosis system for cancer cells. Studies on the automated analysis of cytology pleural effusion images are few because of the lack of reliable cell nuclei segmentation methods.Therefore, this paper presents a comparative study of twelve nuclei segmentation methods for cytology pleural effusion images.Each method involves three main steps: preprocessing,segmentation, and postprocessing.The preprocessing and segmentation stages help enhancing the image quality and extracting the nuclei regions from the rest of the image, respectively.The postprocessing stage helps in refining the segmented nuclei and removing false findings.The segmentation methods are quantitatively evaluated for 35 cytology images of pleural effusion by computing five performance metrics. The evaluation results show that the segmentation performances of the Otsu, k-means, mean shift, Chan-Vese,and graph cut methods are 94,94,95,94,and 93%,respectively, with high abnormal nuclei detection rates.The average computational times per image are 1.08,36.62,50.18,330, and 44.03 seconds,respectively.The findings of this study will be useful for current and potential future studies on cytology images of pleural effusion. ©2018 Khin Yadanar Win et al.
dc.subjectAutomation
dc.subjectCells
dc.subjectComputer aided diagnosis
dc.subjectCytology
dc.subjectGraphic methods
dc.subjectImage enhancement
dc.subjectQuality control
dc.subjectCell nuclei segmentation
dc.subjectComparative studies
dc.subjectComputer aided diagnosis systems
dc.subjectNuclei segmentation
dc.subjectPerformance metrics
dc.subjectPost-processing stages
dc.subjectSegmentation methods
dc.subjectSegmentation performance
dc.subjectImage segmentation
dc.subjectArticle
dc.subjectautomation
dc.subjectbenchmarking
dc.subjectcell nucleus
dc.subjectcytology
dc.subjectevaluation study
dc.subjectgold standard
dc.subjecthuman
dc.subjecthuman tissue
dc.subjectintermethod comparison
dc.subjectmathematical model
dc.subjectpleura effusion
dc.subjectquantitative analysis
dc.subjectalgorithm
dc.subjectcluster analysis
dc.subjectcomparative study
dc.subjectcomputer assisted diagnosis
dc.subjectcytodiagnosis
dc.subjectimage processing
dc.subjectpleura effusion
dc.subjectprocedures
dc.subjectreproducibility
dc.subjectsoftware
dc.subjectAlgorithms
dc.subjectCell Nucleus
dc.subjectCluster Analysis
dc.subjectCytodiagnosis
dc.subjectCytological Techniques
dc.subjectDiagnosis, Computer-Assisted
dc.subjectHumans
dc.subjectImage Processing, Computer-Assisted
dc.subjectPleural Effusion
dc.subjectReproducibility of Results
dc.subjectSoftware
dc.titleComparative study on automated cell nuclei segmentation methods for cytology pleural effusion images
dc.typeArticle
dc.rights.holderScopus
dc.identifier.bibliograpycitationJournal of Healthcare Engineering. Vol 2018, (2018)
dc.identifier.doi10.1155/2018/9240389
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.