Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/12678
ชื่อเรื่อง: Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules
ผู้แต่ง: Gritsch L.
Conoscenti G.
La Carrubba V.
Nooeaid P.
Boccaccini A.R.
Keywords: Bioactive glass
Bioactivity
Biomedical equipment
Biomineralization
Biomolecules
Biopolymers
Blending
Composite materials
Cost effectiveness
Functional polymers
Growth (materials)
Histology
Interfaces (materials)
Lactic acid
Polyesters
Scaffolds
Scaffolds (biology)
Structure (composition)
Tissue engineering
Biological molecule
Biomedical devices
Biomedical polymers
Bone tissue engineering
Composite fabrication
Extracellular matrices
Material interfaces
Poly lactic acid
Tissue
polyester
polylactide
signal peptide
animal
chemistry
human
materials science
synthesis
tissue engineering
tissue scaffold
Animals
Humans
Intercellular Signaling Peptides and Proteins
Materials Science
Polyesters
Tissue Engineering
Tissue Scaffolds
วันที่เผยแพร่: 2019
บทคัดย่อ: In a large number of medical devices, a key feature of a biomaterial is the ability to successfully bond to living tissues by means of engineered mechanisms such as the enhancement of biomineralization on a bone tissue engineering scaffold or the mimicking of the natural structure of the extracellular matrix (ECM). This ability is commonly referred to as “bioactivity”. Materials sciences started to grow interest in it since the development of bioactive glasses by Larry Hench five decades ago. As the main goal in applications of biomedical devices and tissue scaffolds is to obtain a seamless tissue-material interface, achieving optimal bioactivity is essential for the success of most biomaterial-based tissue replacement and regenerative approaches. Polymers derived from lactic acid are largely adopted in the biomedical field, they are versatile, FDA approved and relatively cost-effective. However, as for many other widespread biomedical polymers, they are hydrophobic and lack the intrinsic ability of positively interacting with surrounding tissues. In the last decades scientists have studied many solutions to exploit the positive characteristics of polylactide-based materials overcoming this bottleneck at the same time. The efforts of this research fruitfully produced many effective tissue engineering technologies based on PLA and related biopolymers. This review aims to give an overview on the latest and most promising strategies to improve the bioactivity of lactic acid-based materials, especially focusing on biomolecule-free bulk approaches such as blending, copolymerization or composite fabrication. Avenues for future research to tackle current needs in the field are identified and discussed. © 2018 Elsevier B.V.
URI: https://ir.swu.ac.th/jspui/handle/123456789/12678
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053931733&doi=10.1016%2fj.msec.2018.09.038&partnerID=40&md5=c8553b8bc63b994122f7cdccb9d583c1
ISSN: 9284931
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.