Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/12352
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSermsai R.
dc.contributor.authorLaohakiat S.
dc.date.accessioned2021-04-05T03:02:53Z-
dc.date.available2021-04-05T03:02:53Z-
dc.date.issued2019
dc.identifier.other2-s2.0-85074239075
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/12352-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074239075&doi=10.1109%2fJCSSE.2019.8864227&partnerID=40&md5=46eedc0bac997edcaf82c1bf33008586
dc.description.abstractTwitter is one of the most popular social networks with millions of audience every day around the world. Analyzing and predicting the popularity of Twitter posts have been one of widely studied topics that allows us to uncover the pattern and trend of collective interest of Twitter audience towards each post. In this study, we present a novel method in analyzing and predicting temporal profile of Twitter popularity, including both retweets and replies, using dynamic time warping (DTW) in finding the similarity among the temporal profiles of the popularity. Then, similar temporal profiles are grouped together using sequential clustering and the centroids of each cluster are determined by calculating Barycenter of each cluster. These centroids are used as popularity profile templates for the popularity prediction of a new post. The proposed method is tested with real Twitter posts obtained from international Twitter news channels. The experimental results show that the proposed method outperforms the existing method which is based on exponential model. © 2019 IEEE.
dc.subjectForecasting
dc.subjectSoftware engineering
dc.subjectBarycenters
dc.subjectDynamic time warping
dc.subjectSequential clustering
dc.subjectTemporal analysis
dc.subjectTwitter
dc.subjectSocial networking (online)
dc.titleAnalysis and prediction of temporal twitter popularity using dynamic time warping
dc.typeConference Paper
dc.rights.holderScopus
dc.identifier.bibliograpycitationJCSSE 2019 - 16th International Joint Conference on Computer Science and Software Engineering: Knowledge Evolution Towards Singularity of Man-Machine Intelligence. (2019), p.176-180
dc.identifier.doi10.1109/JCSSE.2019.8864227
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.