Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/11863
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMisra K.C.
dc.contributor.authorPongprasert S.
dc.date.accessioned2021-04-05T03:01:19Z-
dc.date.available2021-04-05T03:01:19Z-
dc.date.issued2020
dc.identifier.issn927872
dc.identifier.other2-s2.0-85083237335
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/11863-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85083237335&doi=10.1080%2f00927872.2020.1737872&partnerID=40&md5=159ee0a36afb2d8b591a7058c1f3f3b2
dc.description.abstractLet (Formula presented.) be an affine Lie algebra with index set (Formula presented.) It is conjectured that for each Dynkin node (Formula presented.) the affine Lie algebra (Formula presented.) has a positive geometric crystal. In this paper we construct a positive geometric crystal for the affine Lie algebra (Formula presented.) corresponding to the Dynkin spin node k = 6. Communicated by Sarah Witherspoon. © 2020, © 2020 Taylor & Francis Group, LLC.
dc.title#NAME?
dc.typeArticle
dc.rights.holderScopus
dc.identifier.bibliograpycitationCommunications in Algebra. Vol 48, No.8 (2020), p.3382-3397
dc.identifier.doi10.1080/00927872.2020.1737872
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.