Please use this identifier to cite or link to this item:
https://ir.swu.ac.th/jspui/handle/123456789/11863
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Misra K.C. | |
dc.contributor.author | Pongprasert S. | |
dc.date.accessioned | 2021-04-05T03:01:19Z | - |
dc.date.available | 2021-04-05T03:01:19Z | - |
dc.date.issued | 2020 | |
dc.identifier.issn | 927872 | |
dc.identifier.other | 2-s2.0-85083237335 | |
dc.identifier.uri | https://ir.swu.ac.th/jspui/handle/123456789/11863 | - |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083237335&doi=10.1080%2f00927872.2020.1737872&partnerID=40&md5=159ee0a36afb2d8b591a7058c1f3f3b2 | |
dc.description.abstract | Let (Formula presented.) be an affine Lie algebra with index set (Formula presented.) It is conjectured that for each Dynkin node (Formula presented.) the affine Lie algebra (Formula presented.) has a positive geometric crystal. In this paper we construct a positive geometric crystal for the affine Lie algebra (Formula presented.) corresponding to the Dynkin spin node k = 6. Communicated by Sarah Witherspoon. © 2020, © 2020 Taylor & Francis Group, LLC. | |
dc.title | #NAME? | |
dc.type | Article | |
dc.rights.holder | Scopus | |
dc.identifier.bibliograpycitation | Communications in Algebra. Vol 48, No.8 (2020), p.3382-3397 | |
dc.identifier.doi | 10.1080/00927872.2020.1737872 | |
Appears in Collections: | Scopus 1983-2021 |
Files in This Item:
There are no files associated with this item.
Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.