Please use this identifier to cite or link to this item: https://ir.swu.ac.th/jspui/handle/123456789/11788
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLaohakiat S.
dc.contributor.authorSa-ing V.
dc.date.accessioned2021-04-05T03:01:13Z-
dc.date.available2021-04-05T03:01:13Z-
dc.date.issued2021
dc.identifier.issn200255
dc.identifier.other2-s2.0-85090056358
dc.identifier.urihttps://ir.swu.ac.th/jspui/handle/123456789/11788-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85090056358&doi=10.1016%2fj.ins.2020.08.052&partnerID=40&md5=962fb4debe8d483bc4c7fb9e7198e4e1
dc.description.abstractThis paper presents a novel incremental density-based clustering framework using the one-pass scheme, named Fuzzy Incremental Density-based Clustering (FIDC). Employing one-pass clustering in which each data point is processed once and discarded, FIDC can process large datasets with less computation time and memory, compared to its density-based clustering counterparts. Fuzzy local clustering is employed in local clusters assignment process to reduce clustering inconsistencies from one-pass clustering. To improve the clustering performance and simplify the parameter choosing process, the modified valley seeking algorithm is used to adaptively determine the outlier thresholds for generating the final clusters. FIDC can operate in both traditional and stream data clustering. The experimental results show that FIDC outperforms state-of-the-art algorithms in both clustering modes. © 2020 Elsevier Inc.
dc.rightsSrinakharinwirot University
dc.subjectData streams
dc.subjectLarge dataset
dc.subjectComputation time
dc.subjectDensity-based Clustering
dc.subjectLarge datasets
dc.subjectLocal cluster
dc.subjectLocal clustering
dc.subjectState-of-the-art algorithms
dc.subjectStream data clustering
dc.subjectValley seeking
dc.subjectClustering algorithms
dc.titleAn incremental density-based clustering framework using fuzzy local clustering
dc.typeArticle
dc.rights.holderScopus
dc.identifier.bibliograpycitationInformation Sciences. Vol 547, (2021), p.404-426
dc.identifier.doi10.1016/j.ins.2020.08.052
Appears in Collections:Scopus 1983-2021

Files in This Item:
There are no files associated with this item.


Items in SWU repository are protected by copyright, with all rights reserved, unless otherwise indicated.