Browsing by Author Changjan A.

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or enter first few letters:  
Showing results 1 to 20 of 21  next >
Issue DateTitleAuthor(s)
2023A Study of the Temperature-Dependent Surface and Upper Critical Magnetic Fields in KFeSe and LaSrCuO SuperconductorsMeakniti S.; Udomsamuthirun P.; Changjan A.; Chanilkul G.; Kruaehong T.; Srinakharinwirot University
2011Critical magnetic field ratio of anisotropic magnetic superconductorsChangjan A.; Udomsamuthirun P.
2013Critical temperature of magnetic superconductors by two-band Ginzburg-Landau approachChangjan A.; Udomsamuthirun P.
2022Effect of the plasmon mechanism on s-wave superconductors under high pressure in the weak-coupling limitUdomsamuthirun P.; Changjan A.; Sukhonthachat J.; Meesubthong C.
2023External pressure effects on superfluid density of isotropic s-wave superconductorsChanilkul G.; Changjan A.; Nilkamjon T.; Udomsamuthirun P.; Srinakharinwirot University
2006Hc2 of anisotropy two-band superconductors by Ginzburg-Landau approachUdomsamuthirun P.; Changjan A.; Kumvongsa C.; Yoksan S.
2023Investigation of the effect of high pressure on the superfluid density of H3S, LaH10, and CaAlSi superconductorsChanilkul G.; Changjan A.; Udomsamuthirun P.; Srinakharinwirot University
2022LONDON PENETRATION DEPTH OF CaAlSi SUPERCONDUCTORS BY SEMI-CLASSICAL APPROACHChangjan A.; Chanilkul G.; Udomsamuthirun P.
2014London penetration depth of Fe-based superconductorsChangjan A.; Udomsamuthirun P.
2013London penetration depth λ(T) in type 1.5 superconductor by Ginzburg-Landau approachNiyomsilpchai N.; Changjan A.; Udomsamuthirun P.
2014Magnetic attenuation in superconducting cylinders by beer-lambert modified modelChangjan A.; Punchoo S.; Udomsamuthirun P.
2020Penetrate field behavior in superconducting shield by modified beer-lambert model: Applied to cylindrical MgB2 superconductorsChangjan A.; Udomsamuthirun P.; Kongsorn C.
2019Superfluid density of anisotropic S-wave superconductors by semi-classical approach: Applied to MgB2 and CaAlSi superconductorsChangjan A.; Chanilkul G.; Udomsamuthirun P.; Tongkhonburi P.
2019Temperature-dependent coherence length of type 1.5 superconductorChangjan A.; Udomsamuthirun P.
2011The critical magnetic field of anisotropic two-band magnetic superconductorsChangjan A.; Udomsamuthirun P.
2023THE PENETRATION DEPTH OF H3S SUPERCONDUCTOR BY SEMICLASSICAL APPROACHChanilkul G.; Changjan A.; Kruaehong T.; Udomsamuthirun P.; Srinakharinwirot University
2014The study on surface critical magnetic field of a layered magnetic superconductorsMeakniti S.; Changjan A.; Udomsamuthirun P.
2023THE STUDY ON TEMPERATURE-DEPENDENT SURFACE CRITICAL MAGNETIC FIELD OF IRON-BASED SUPERCONDUCTORSMeakniti S.; Udomsamuthirun P.; Changjan A.; Kruaehong T.; Srinakharinwirot University
2023The temperature dependent surface critical magnetic field (Hc3) of K0.73Fe1.68Se2superconductor by semi-anisotropic two band Ginzburg-Landau approachMeakniti S.; Changjan A.; Udomsamuthirun P.; Srinakharinwirot University
2017The temperature-dependent surface critical magnetic field (HC3) of magnetic superconductors: Applied to lead bismuth (Pb82Bi18) superconductorsChangjan A.; Meakniti S.; Udomsamuthirun P.