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In this thesis, the quantum entanglement of a system of two coupled two-level
atoms in thermal equilibrium under an applied laser field has been investigated theoretically.
It is shown that, before the laser field is applied, the thermal state is separable (inseparable
or entangled) for all temperatures high (low) enough such that the certain inequality holds
(is violated). Moreover, a quantitative study shows that the degree of quantum
entanglement is zero not only at high temperatures but also approaches zero in the low
temperature limit. After the laser field is applied, the degree of quantum entanglement at
each temperature oscillates in time between zero and its own maximum value except at the
very high temperature where it always vanishes. Furthermore, the degree of quantum
entanglement at each time, unlike the situation before the laser field is applied, does not
approach zero in the low temperature limit.
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Chapter 1
Introduction

1.1 Rationale
Many years ago until now, several attempts have been made in order to construct

the high speed communication apparatus by using the well-known pure quantum correlation
called “entanglement”. This entanglement enables us, in principle, to create an
instantaneous interaction between very far objects such as the famous system of two
electrons used to describe the EPR paradox (Einstein; et al. 1935: 777) and the system of
two photons or atoms used to create the cryptography and high speed computation called
quantum cryptography and quantum computer respectively. Once this kind of system can
be constructed, the instantaneous interaction due to entanglement may allow us to make
the extremely fast data transportation from one place to another place no matter how far
the distance between the two places are, e.g. the technique called quantum teleportation.
One of the main problem to create such a communication system is the decoherence due
to the contact of the system with its environment which causes the destruction of
entanglement, e.g. by the effect of temperature.

In this research, the entanglement of the system of two coupled two-level atoms will
be investigated in two aspects by using the definition of separable state given by Werner
(Werner. 1989: 4277) and the renowned Positive Partial Transposition criterion (PPT-
criterion) given by Peres (Peres. 1996: 1413). The first aspect is to study the coupling and
temperature effects on the entanglement of two coupled two-level atoms in thermal
equilibrium where the coupling between two atoms is the dipole-dipole interaction. The
second aspect is to study the effect of a laser field, which is applied to both atoms, on
entanglement of the two coupled two-level atoms initially in the thermal equilibrium, i.e. we
aim to search whether the entanglement between two atoms can be controlled by a laser
field or not.

1.2 Purposes
1. To study the entanglement of two coupled two-level atoms in thermal

equilibrium.
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2. To study some effects of laser field on the entanglement of two coupled two-
level atoms initially in thermal equilibrium.

3. To pave the way for future applications especially on the field of quantum
communication.

1.3 Limitation
In this research, two atoms are considered as they have only two levels and the

interaction between them is the electric dipole-dipole interaction.

1.4 Benefits
1. To obtain some new aspects of the entanglement of two coupled two-level

atoms in thermal equilibrium.
2. To obtain some new aspects of the entanglement of two coupled two-level

atoms initially in thermal equilibrium under applied laser field.
3. To provide the primary system for further applications especially on the field of

quantum communication.



Chapter 2
Review of Literature

This chapter consists of the following topics:
2.1 Single system
2.2 Composite system and entanglement
2.3 Hidden-variable and violation of Bell’s inequality
2.4 Positive Partial Transposition criterion (PPT-criterion)
2.5 Necessary and sufficient conditions for separability
2.6 Negativity
2.7 Investigation of the thermal state of two coupled two-level atoms

2.1 Single system (Sakurai. 1994: 176-179)
The density operator formalism, pioneered by J. von Neumann in 1927, describes

physical situations quantitatively with mixed as well as pure ensembles. Our general
discussion here is not restricted to spin ½ systems, but for illustrative purposes we return
repeatedly to spin ½ systems.

A pure ensemble by definition is a collection of physical systems such that every
member is characterized by the same ket  . In contrast, in a mixed ensemble, a fraction
of the members with relative population 1p are characterized by 1 , some other fraction
with relative population 2p , by 2 , and so on. Roughly speaking, a mixed ensemble
can be viewed as a mixture of pure ensembles, just as the name suggests. The fractional
populations are constrained to satisfy the normalization condition

1
i

ip . (1)

As we mentioned previously, 1 and 2 need not be orthogonal. Furthermore, the
number of terms in the i sum of (1) need not coincide with the dimensionality N of the ket
space; it can easily exceed N. For example, for spin ½ systems with N=2, we may consider
40% with spin in the positive z-direction, 30% with spin in the positive x-direction, and the
remaining 30% with spin in the negative y-direction.



4

Suppose we make a measurement on a mixed ensemble of some observable A.
We may ask what is the average measured value of A when a large number of
measurements are carried out. The answer is given by the ensemble average of A, which is
defined by

, (2)

where a is an eigenket of A. Recall that  ii A is the usual quantum mechanical
expectation value of A taken with respect to state i . Eq. (2) tells us that these
expectation values must further be weighted by the corresponding fractional populations ip .
Notice how probabilistic concepts enter twice; first in  2ia  for the quantum-
mechanical probability and second, the factor ip for finding in the ensemble a quantum-
mechanical state characterized by i .

We can now rewrite ensemble average (2) using a more general basis,  b:

. (3)

The number of terms in the sum of the  bb  is just the dimensionality of the ket space,
while the number of terms in the sum of the i depends on how the mixed ensemble is
viewed as a mixture of pure ensemble which does not depend on the particular observable
A is factored out. This motivates us to define the density operator as follows:

. (4)

The elements of the corresponding density matrix have the following form:

. (5)

 

 aap

ApA

i a

i
i

i

i

i
i











2




 

  bAbbbp

bbAbbpA

b b i

ii
i

i

i b b

i
i








 





 

 

 





 i

i

i
ip  

  
i

ii
i bbpbb 
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The density operator contains all the physically significant information we can possibly
obtain about the ensemble in question. Returning to eq. (3), we see that the ensemble
average can be written as

. (6)

Because the trace is independent of representations,  Atr  can be evaluated using any
convenient basis. As a result, eq. (6) is an extremely powerful relation.

There are three properties of the density operator worth recording. First, the density
operator is Hermitian, as is evident from eq. (4). Second, the density operator satisfies the
normalization condition

. (7)

Third, the density operator are positive, all eigenvalue are positive ( 0 ).
Because of the Hermiticity and the normalization condition, for spin ½ system with

dimensionality 2, the density operator or the corresponding density matrix is characterized
by three independent real parameters. Four real numbers characterized a 22 Hermitian
matrix. However, only three are independent because of the normalization condition. The
three numbers needed are xS , yS and zS ; the reader may verify that knowledge of
these three ensemble averages is sufficient to reconstruct the density operator. The manner
in which a mixed ensemble is formed can be rather involved. We may mix pure ensembles
characterized by all kinds of i ’s with appropriate ip ’s; yet for spin ½ systems three
real numbers completely characterize the ensemble in question. This strongly suggests that
a mixed ensemble can be decomposed into pure ensembles in many different ways.

A pure ensemble is specified by 1ip for some i – with i = n, for instance –
and 0ip for all other conceivable state kets, so the corresponding density operator is
written as

 Atr

bAbbbA
b b








 

  

 

1










i

ii
i

i

i b

i
i

p

bbptr




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(8)

with no summation. Clearly, the density operator for a pure ensemble is idempotent, that is,

(9)

or, equivalently,

. (10)

Thus, for a pure ensemble only, we have

. (11)

in addition to eq. (7). The eigenvalues of the density operator for a pure ensemble are zero
or one, as can be seen by inserting a complete set of base kets that diagonalizes the
density matrix, for a pure ensemble it looks like

(diagonal form)

. (12)

It can be shown that  2tr is maximal when the ensemble is pure; for a mixed ensemble
 2tr is a positive number less than one.

Given a density operator, let us see how the corresponding density matrix can be
constructed in some specified basis. To this end, we first recall that

 nn 

 2

  01 

 12 tr





































00
0

0
1

0

0
00






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
 


b b

bbbb  . (13)

This shows that we can form the square matrix corresponding to  ii  by multiplying
the column matrix formed by ib  with the row matrix formed by bi  which, of
course, is equal to  *ib  . The final step is to sum such square matrices with weighting
factors ip , as indicated in eq. (4). The final form agrees with eq. (5), as expected.

2.2 Composite system and entanglement
Consider the composite system described by the vector (Hilbert) space V consisting

of two subsystems described by V1 and V2 physically, V of the composite system can be
written as 21 VV  , called the tensor product of V1 and V2 defined as follows.

Definition of tensor product (Cohen-Tannoudji; et al. 1977: 154-157)
Let V1 and V2 be two vector spaces of dimension N1 and N2 respectively. Vectors

and operators of these spaces will be assigned an index, (1) or (2), depending on whether
they belong to V1 or V2 . The vector space V is called the tensor product of V1 and V2:

if there is associated with each pair of vectors, 1 belonging to V1 and 2 belonging
to V2, a vector of V denote by:

which is called the tensor product of 1 and 2 , this correspondence satisfying the
following conditions :

1. It is linear with respect to multiplication by complex numbers

2. It is distributive with respect to vector addition:

21 VVV 

 21  

     2121  

     2121  

       2121221 2121  
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3. When a basis has been chosen in each of the space V1 and V2,  1iu for V1

and  2lv for V2, the set of vectors  21 li vu  constitutes a basis in V. If N1 and
N2 are finite, the dimension of V is consequently N1N2.

Vectors of V

1. Let us first consider a tensor product vector,  21   . Whatever 1

and 2 may be, they can be expressed in the  1iu and  2lv bases
respectively:

The expansion of the vector  21   in the   21 li vu  basis can be written
as:

Therefore, the components of a tensor product vector are the products of the
components of the two vectors of the product.

2. There exist in V vectors which are not tensor products of a vector of V1 by a
vector of V2. Since   21 li vu  by hypothesis constitutes a basis in V, the most
general vector of V is expressed by:

Given N1N2 arbitrary complex numbers lic , , it is not always possible to put them in the form
of product, liba , of N1 numbers ia and N2 numbers lb . Therefore, in general, vector

1 and 2 of which  is the tensor product do not exist. However, an arbitrary
vector of V can always be decomposed into a linear combination of tensor product vectors.

       2121211 2121  

 
i

ii ua 11

 
l

ll vb 22

   2121
,

li
li

li vuba  

 21
,

, li
li

li vuc 
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The scalar product in V

The existence of scalar product in V1 and V2 permits us to define one in V as well.
We first define the scalar product of   2121   by

   2121   by setting:

For two arbitrary vectors of V, we simply use the fundamental properties of the scalar
product, since each of these vectors is a linear combination of tensor product vectors.

Notice, in particular, that the basis    2121 lili vuvu  is orthonormal if
each of the bases  1iu and  2lv is:

Tensor product of operator
1. First, consider a linear operator 1A defined in V1. We associate with it a linear

operator 1~
A acting in V, which we call the extension of 1A in V, and which is

characterized in the following way : when 1~
A is applied to a tensor product vector

 21   , one obtains, by definition:

The hypothesis that 1~
A is linear is then sufficient for determining it completely. An

arbitrary vector  of V can be written in the form  21
,

, li
li

li vuc  , then gives

the action of 1~
A on  :

We obtain in an analogous manner the extension 2
~
B of an operator 2B initially

defined in V2.

     22112121  

     22112121 lliilili vvuuvuvu  

llii  

      211211~   AA

     21111~

,
, l

li
ili vuAcA 
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2. Now let 1A and 2B be two linear operators acting respectively in V1 and V2.
Their tensor product  21 BA  is the linear operator in V, defined by the following
relation which describes its action on the tensor product vectors:

Here also, this definition is sufficient for characterizing  21 BA  .

Uncorrelated states (Werner. 1989: 4277),
Consider a composite quantum system described by a Hilbert space BA VVV  .

An uncorrelated state of this system is given by a density operator  acting in V of the
form BA   , where A and B are the density operators acting in VA and VB

respectively. This is equivalent to say that the expectation value  BATr  for the joint
measurement of observable A and observable B on the respective subsystem always
factorizes,

(14)

Uncorrelated states can be prepared vary easily by using two preparing devices for system
A and B, which function independently and yield the states A and B respectively. Then
the factorization property means that if the measuring devices described by A and B also
operate independently, we are simply conducting two separate experiments at the same
time and the classical multiplication rule for probability applies.

Correlated states and entanglement (Werner. 1989: 4277)
Suppose that each of the two preparing devices has a switch with settings i = 1,…,

n, and, with setting i, the device produces system in the state A
i and B

i . Suppose we
have also a random generator, which produces number i = 1,…, n with probability ip . We
can combine these three devices into a new preparing apparatus by the following
prescription: In each individual experiment, one first draws a random number i  {1,…, n}.
The switches of the two preparing devices are then set according to the result (see figure 1.
below). Clearly then, the expectation of a measurement of observables A and B will be

         22112121  BABA 

     
  .BTrATr

BTrATrBATr
BA 





 11
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Fig. 1. : Apparatus prepared for the construction of classically correlated state.

,

with the density operator

 
i

B
i

A
iip  (15)

The physical source of these correlations is the random generator, which can be chosen as
a purely classical device. Therefore, we shall call a density operator (a state) classically
correlated or disentangled if it can be represented or approximated by density operators
of the form eq. (15). States that are not classically correlated is called EPR correlated or
entangled. Classical correlation does not mean that the state has actually been prepared in
the manner described above, but only that its statistical properties can be reproduced by a
classical mechanism.

2.3 Hidden-variable and violation of Bell’s inequality (Werner. 1989: 4277)
For any set of correlations determined in an experiment one can raise the question

whether these correlations can be described within a purely classical “hidden-variable”
theory. Such a theory is based on some probability space ( M,,  ), called the space of

     
i

B
i

A
ii BATrBtrATrp 
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hidden variables, consisting of a - algebra  of subsets of  and a - additive
normalized measure M on . For any measuring device A with possible outcome , one
demands the existence of a measurable response function   ,AF interpreted
as the probability that the outcome  is obtained in an experiment with known value

 of the hidden variables. Therefore the response functions must satisfy   0, AF

and   1, 
AF for every  , where the sum is over all possible outcomes of the

measurement of A. A hidden-variable model for some set of correlations is then given by a
probability space and a collection of response functions such that the probability in an
experiment with a measuring device A on system A and a device B on system B for
obtaining the result  on A and simultaneously the result  on B is given by the
expression       ,, BA FFdM .

Any hidden-variable model can be extended to measurements with continuous
outcome parameters, and can be modified to a “deterministic model” in which the response
functions take only the value 0 and 1. Therefore we shall stay with the above simple
definition. The existence of a hidden-variable model is exactly the hypothesis of the usual
derivations of Bell’s inequalities, the “locality” of the theory being expressed by the fact that
the response function for A is independent of B and vice versa. It is known that while these
inequalities are necessary conditions for the existence of a hidden-variable model, they are
not sufficient. On the other hand, the set of correlations admitting hidden-variable model is
a convex set, and as such is completely described by some set of linear inequalities. We
shall refer to any one of these inequalities as a (generalized) Bell’s inequality. Despite some
partial results in this direction, no efficient procedure for obtaining all generalized Bell’s
inequalities is known.

An interesting question is, then, whether or not the correlations described by a
quantum state of a composite system admit a hidden-variable model. To answer this
question, let us consider the measuring devices of system A and B represented
respectively by observables, i.e. by Harmitian operators AVA and BVB  with spectral
resolution   PA and   QB eigenvalues  ,  and eigenprojection
P , Q . We then say that a state BA VV  admits a hidden-variable model if there are

a probability space   ,, and response functions, defined for all Hermitian
AVPA   and BVQB   with discrete spectrum, such that for all A, B,

 and ,
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. (16)

We claim that all classically correlated states admit hidden-variable models, and hence
satisfy all Bell inequalities. This can be proven quite simply for convex combinations of
products as in eq. (14). We then take  = {1,…, n}, M({r}) = pr,     PTrrF A

rA , , and
define BF analogously. Then eq. (15) implies eq. (16). We omit the somewhat technical,
but straightforward approximation arguments needed to extend this result to all classically
correlated states.

We conclude that every state violating some generalized Bell’s inequality, i.e. any
state not admitting a hidden-variable model, cannot be classically correlated, i.e. is EPR
correlated. The well-known experiments demonstrating a violation of Bell’s inequalities can
thus be taken as direct experimental evidence for the existence of EPR correlated states.
The vital importance of such states for quantum theory is further underlined by the fact that
they are automatically generated by an interacting time evolution. To be precise, any unitary
time evolution, which takes all classically correlated initial states again to classically
correlated states, necessarily factorizes into the product of two separate time evolutions.
Consequently, the ground state of an interacting system, which is often especially easy to
prepare, is usually not classically correlated. The states of a relativistic quantum-field theory
are even more universally EPR correlated, since any state of finite energy violates Bell’s
inequalities for suitable space like localized observables.

Since any state violating some generalized Bell’s inequality is EPR correlated, one
might conjecture that the converse holds, i.e. that every state admitting a hidden-variable
model is classically correlated. This conjecture is indeed true for pure states of a composite
quantum system, given by unit vector in BA VV  , but is false for general mixed states. In
the next section, another criterion called “PPT-criterion”, which is claimed to be more
sensitive than the violation of Bell’s inequality, will be reviewed.

2.4 Positive Partial Transposition criterion (PPT-criterion) (Peres. 1996: 1413)
A striking quantum phenomenon is the inseparability or entanglement of composite

quantum systems. Its most famous example is the violation of Bell’s inequality, which may
be detected if two distant observers, who independently measure subsystems of a
composite quantum system, report their results to a common site where that information is
analyzed. However, even if Bell’s inequality is satisfied by a given composite quantum

        QPWTrFFdM BA  ,,
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system, there is no guarantee that its state can be prepared by two distant observers who
receive instructions from a common source. For this to be possible, the density matrix 

has to be separable i.e. it can be written as

(17)

where the positive weights ip satisfy 1
i

ip , and where A
i and B

i are density

matrices for the two subsystems. A separable system always satisfies Bell’s inequality, but
the converse is not necessarily true. In the work by Peres (Peres. 1996: 1413) a simple
algebraic test is derived, which is a necessary condition for the existence of the
decomposition (17) i.e. for the existence of the separability of the state . Peres (Peres.
1996: 1413) also give some examples showing that this criterion is more restrictive than
Bell’s inequality, or than theα-entropy inequality.

The derivation of this separability condition can be done by writing the density
matrix elements explicitly, with all their indices. For example, eq. (17) becomes

(18)

Latin indices refer to the first subsystem, Greek indices to the second one (the subsystems
may have different dimensions). Note that this equation can always be satisfied if we
replace the quantum density matrices by classical Liouville functions (and the discrete
indices are replaced by canonical variables p and q). The reason is that the only constraint
that a Liouville function has to satisfy is being non-negative. On the other hand, we want
quantum density matrices to have non-negative eigenvalues, rather than non-negative
elements, and the latter condition is more difficult to satisfy. Let us now define a new
matrix,

(19)

The Latin indices of  have been transposed, but not the Greek ones. This is not a
unitary transformation but, nevertheless, the  matrix is Hermitian. When eq. (17) is valid,
we have

 
i

B
i

A
iip 

  
i

B
imn

A
iinm p   ,

  mnnm ,, 
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(20)

Since the transposed matrices     A
i

TA
i  are non-negative matrices with unit trace,

they can also be legitimate density matrices. It follows that none of the eigenvalues of  is
negative. This is a necessary condition for eq. (17) to hold. This condition is called positive
partial transpose (PPT) criterion.

Note that the eigenvalues of  are invariant under separate unitary
transformations, AU and BU of the bases used by the two observers. In such a case, 
transforms as

  BABA UUUU   †

and we then have

  BABA UUUU
TT

  †

which also is unitary transformation, leaving the eigenvalues of  invariant.

2.5 Necessary and sufficient conditions for separability
Horodeckis (M. Horodecki; et al. 1996: 1) provide necessary and sufficient

conditions for the separability of mixed states and find that, for 22 and 23 systems,
the positive of the partial transposition of a state is not only necessary but also sufficient for
its separability. However, this is not true for the general systems. We shall use this fact to
investigate the entanglement of the system of two coupled two-level atoms, which is the
22 system.

2.6 Negativity
Negativity (Vidal; & Werner. 2002: 032314) was introduced by Vidal and Werner in

order to measure the degree to which  (the partial transpose of  defined in section 2.4)
fails to be positive. Among quantities capable of measuring the so-called “degree of
entanglement”, negativity  N is the one which is suitable for us to compute the degree
of entanglement of our problem. It is defined by

  
i

B
i

TA
iip 
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
2

1
1





N ,

Where is the trace norm of the partial transpose (of ) . This negativity
is related to its eigenvalues as follows:

 





















k

k
k

k
i

i

N 



2

121

2

1

2

11

Where i is an eigenvalues of  and 0 kk  is a negative eigenvalues of .
Note that if non of its eigenvalues are negative, then  0N . However, this

implies that there is no entanglement only in the case that PPT-criterion is also the
sufficient condition.

2.7 Investigation of the thermal state of two coupled two-level atoms

Fig. 2. : System of two coupled two-level atoms in thermal equilibrium at absolute
temperature T.

Our system of interest consists of two atoms (see Fig.2. above) which can be
described by the following Hamiltonian operator

, (21)

where represents the energy of atom A,

 BABAB
z

BA
z

A σσσσgσωσωH   
22

AA zσ
ω
2



† Tr
1
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represents the energy of atom B,

represents the dipole-dipole interaction between
atom A and atom B (g is the coupling strength),

and Z (Pauli spin matrix),  (Spin flip matrices) are defined by










10

01
Z , 





 00

10
 , 





 01

00
 .

Substitute these matrices into Hamiltonian (21), the result is

; BA   , (22)

Here, we have used the relations BZ
A
Z 1  ,,,,  and   ,,,, Z

B
Z  A1 . Energy

eigenvalues and energy eigenvectors can be obtained by considering the characteristic
polynomial of Hamiltonian H,

, (23)

which yields four energy eigenvalues,

(24)
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and also the corresponding energy eigenvectors,

(25)

where

In thermal equilibrium at absolute temperature T, density operator (state) of the system can
be written as

By using the eigenvectors (25) and eigenvalues (24), the above density operator can be
written in the matrix form, called density matrix, as follows:

ii
i

EH EEe
Z

e
Z

i


 
4

1

11 

In the next chapter, we shall use this density operator which represents the state of
the system to investigate separability/entanglement via the PPT-criterion and negativity.
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Chapter 3
Research Methodology and Results

In this chapter, the method given by Peres (Peres. 1996: 1413) and Vidals &
Werner (Vidal; & Werner. 2002: 032314), i.e. the PPT-criterion and negativity, will be used
to investigate the separability of the system of two coupled two-level atoms in thermal
equilibrium described in section 2.7. Furthermore, the method in quantum optics used to
describe the atom-field interaction (Meystre; & Sargent, III. 1998: 66-75) will also be applied
to our problem in order to explain the effect of laser field on the entanglement of our
system, which is initially in thermal equilibrium, when both atoms are coupled by this laser
field.

This chapter consists of the following topics:
3.1 Separability of two coupled two-level atoms in thermal equilibrium
3.2 Two-level atom in a laser field: Rabi’s oscillation
3.3 State of two coupled two-level atoms initially in thermal equilibrium under an

applied laser field
3.4 The effect of laser field on separability of two coupled two-level atoms initially in

thermal equilibrium

3.1 Separability of two coupled two-level atoms in thermal equilibrium
In this section, entanglement of the system consisting of two coupled two-level

atoms that have the dipole-dipole interaction between them in thermal equilibrium
(Locharoenrat; & Khemmani. 2008: 328-334.) is considered by using the definition of
separable state given by Werner (Werner. 1989: 4277) and the PPT-criterion given by
Peres (Peres. 1996: 1413). Werner said that any system consisting of two subsystem A and
B is separable if the density operator of a system can be written or approximated in form

 
i

B
i

A
iip  , (26)

where is the probability distributionip
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}{ A
i

 and }{ B
i

 is the density matrix of subsystem A and B respectively

To apply PPT-criterion, we first need to find the partial transposition of  i.e. AT

where the subsystem A is chosen, without loss of generality, to be transposed
( imjnjmin AT  : ). Once the AT is found the PPT-criterion, which is the
necessary condition for separability, states that if  is separable, then all of the
eigenvalues of AT must be positive, or equivalently, if at least one of the eigenvalues of

AT is negative, then the state  is inseparable or entangled. Fortunately, since our
system of interest is the 22 system where the PPT-criterion is also a sufficient condition
for separability as proved by Horodeckis (M. Horodecki; et al. 1996: 1), the signs of all
eigenvalues of AT thus completely describe the separability of our problem. From the
density matrix , one can find AT and all of its eigenvalues as shown below.

(27)

By solveing characteristic polynomial   0det  IAT  , eigenvalues of AT can be found
as
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Notice that 1, 2 and 4 are always positive, while only the third one, i.e. 3 can be
positive or negative. Clearly, 3  0 if and only if

2

22
2

4
4

2
sinh

g
gδ

kT
R 






 . For the

resonance case ( 0 ), the above positive condition for 3 reduces to  1sinh2 kTg
which shows according to Fig.3. how the state of the system is in separable or inseparable
(entangled) state depending on the parameter kTgx  .

Fig. 3. : Condition for separability in resonance case.

From Fig.3. the intersection of the dash line on x -axis, which is about 0.88, indicates in the
resonance case that the system is separable when 0.88kTg and is inseparable when

0.88kTg . In other words, the system is separable when the temperature is high
enough such that the inequality 0.88kTg holds and the system is inseparable when
the temperature is low enough such that this inequality is violated. Furthermore, a
quantitative version of this result can be studied by calculating the negativity as it can tell
how much the degree of entanglement is. From section 2.6, the negativity is defined by the
sum of an absolute value of negative eigenvalues of partial transposition of . In our case,
since only 3 (shown under eq. (27)) can be negative, the negativity N is just
 3N . Hence, in resonance case, one simply obtain the following graph.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

2.5

kTgx 

0.880x 

x2sinh

Separable Inseparable



22

Fig . 4. : Plot of negativity N as a function of x at 2 and 1g . Notice
that  0N for 88.00 x (separable region) and then goes up for

88.0x (inseparable on entangled region) to its peak and finally reaches to
zero again for large x .

This Fig.4 clearly shows  0N in the region 88.00 x (called “separable region”)
since all eigenvalues are positive while in the region 88.0x (called “inseparable region”),
 0N since 03  . In the inseparable region, N reaches its maximum value at

3.1x or at kTg  and reaches zero at large x (low T ). For different setting such as
03.1 the graph are shown below.

Fig . 5. : Plot of negativity N as a function of x at 03.1 and 1g . Notice
that this graph has the same behavior as the one in Fig.4, however

203.1  causes N having smaller peak and going to zero at
larger x

Sep. Insep.
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Note that, for most realistic settings, 1g so we will consider only the case
1g in this thesis. In the next two sections, we shall consider the effect of laser field on

two-level atom and thus on the entanglement of two coupled two-level atoms which is
initially in thermal equilibrium.

3.2 Two-level atom in a laser field: Rabi’s oscillation
An atom can be interacted with a laser field because an atom composed of changes

while a laser field is an electromagnetic wave. In general, this interaction is truly
complicated and thus be explained via the multipole moments of increasing order. However,
in most practical cases, the wavelength of the field is large compared with the size of an
atom so in this “long wave length approximation”, the multipole reduced to an electric dipole
so that the Hamiltonian of an atom field can be simply written as tEdHH atom


 ,

where d
 is an electric dipole operator and  tExtE cosˆ0

 is an electric field having
linear polarization in x̂ -direction, amplitude 0E and frequency . If the frequency  of a
field is tuned so that it closes to  between some two levels of an atom, this atom can
then be approximated to have only these two levels. In this case, the Hamiltonian of an
atom is simply ZatomH 


2


 , where bbaaZ  and  is the energy gap of
these two level (see Fig.6 below). Here a and b are upper and lower states
respectively. Note that we have chosen the energy zero to be half way between the upper
and lower levels.

Fig. 6. : Two-level atom having energy gap 

Now, in the long wave length approximation (also called dipole approximation) and
two-level approximation, Hamiltonian of the system can be written as
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tEd
H x

Z  cos
22

0 . Furthermore, if the interaction is weak enough, only the term

2

tie 

of tcos is enough to be kept. This is called the “rotating-wave approximation”.

Hence, in the case that all these approximations above are satisfied, Hamiltonian of the
system can be written as

 titi
Z ee

E
H  




 



22

0 (28)

where ba , ab , and bda x . Note that, without loss of generality,
 can be set as real and positive.

In order to see the effect of field on the population between two levels, let us
consider the general state t of the system written in the basis  ba , as

   betCaetCt
ti

b

ti

a
22


 


. (29)

Substitute this equation into SchrÖdinger equation with Hamiltonian at the form (28), one
obtains
















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






tC
tC

R
Ri

tC
tC

dt
d

b

a

b

a




0

0

2

where   is called the “detuning” and 00 ER  is called the “Rabi flopping
frequency”. In the resonance case i.e. 0 or  , this above equation can be solved
easily as,
for the initial condition  10 bC and  00 aC :

  2sin 0tRitCa  and   2cos 0 tRtCb  ,

and for the initial condition  00 bC and  10 aC :
  2cos 0tRtCa  and   2sin 0tRtCb  . (30)
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From eq. (30), it is clean that 2)(tCa and 2)(tCb oscillate between values 1 and 0 with
frequency 0R , therefore the probability of finding the atom on the upper or lower level
oscillates between two levels with frequency 0R . This oscillation is called the “Rabi’s
oscillation” and that is why 0R is called Rabi’s flopping frequency.

In the next section, a laser filed will be applied on both two-level atoms which are
coupled together by a dipole-dipole interaction and initially stay at thermal equilibrium.

3.3 State of two coupled two-level atoms initially in thermal equilibrium under
an applied laser field

Fig. 7. : System of two coupled two-level atoms initially in thermal equilibrium under
the applied field.

Our system of interest now consists of two interacting atoms, each interacts with the
laser field, tExE cosˆ0

 (see Fig.6. above). Combine eq. (21) and (28), the Hamiltonian
of this system can be written as

, (31)

where represents the interaction energy between atom A

and field,
and

represents the interaction energy between atom B

and field.
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Here A and B are the matrix element of the dipole operator of atom A and B along the
polarization of laser field respectively. For simplicity, we now treat these two atoms as
identical i.e. we have  BA .

Now let us consider the density operator or the state of the system at time t which
can be written as

(32)

where (33)

with Ek and kE defined in eq. (24) and (25).

Substitute tE i from eq. (33) into the time-dependent SchrÖdinger equation, i.e.

,

where 0H is the first two terms and IH is the last two term the right hand side of eq. (31)
respectively, one obtains the four coupled first order ordinary differential equations of the
interaction-picture coefficient tC i

k ; i, k = 1, 2, 3, 4 as

(34)

with the initial condition  ik
i

kC 0 , where , and .

Before going to solve this equation, let us first examine the trivial case where 0g (no
coupling) and 0 (resonance), here   BA , BA   ,  . For
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0g , one can verify at the beginning that 1E , 2E , 3E , 4E in eq. (25) where
1sin  and 0cos  is the eigenvector of Hamiltonian (22) with the corresponding

eigenvalues (24), when 0g . Hence, by assigning sin by 1 and cos by 0, eq. (34)
reduces to

(35)

with the initial condition  ik
i

kC 0 . This differential equation can be solved by
diagonalization of the 4x4 matrix in the right hand side of eq. (35), please see the solution
in the appendix A. Once all tC i

k are known, tE i in eq. (33) is also known and thus
t in eq. (32) is then known. Now, let us write down the density operator of subsystem A

and B in a single formula as

where      
,1 /

2

1
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ketCt tiE
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Here, 1 and 2 are a and b defined in section 3.2 respectively and  

2
,

1


BAE ,

 

2
,

2
BAE .  tC BA

k
, here means the probability amplitude of finding atom A, B in the

state k  2,1k at time t if A, B is initially in the upper state 1 . Similarly,  tC BA
k

,

means the probability amplitude of finding atom A, B in the state k at time t if A, B is
initially in the lower state 2 . Note that since  tC BA

k
, and  tC BA

k
, are all known from

eq. (30), one can find the relation between these amplitudes and the amplitude tC i
k

obtained in the appendix A. This relation (see appendix B) thus allow are to verify that
  ttt BA   , as one would expect since, in the case 0g , two atoms are

independent.
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Now, let us consider the very interesting case i.e. 0g with resonance condition
0 . In this condition, one can see that 21cossin   (see the definition of

cos and sin under eq. (25)) and therefore eq. (34) becomes

. (36)

Notice that the 44 matrix in the right hand side of eq. (36) still depends on time t so in
order to apply the diagonalization method, we first make a transformation
  igti

a
i etCtC 1 ,  tC i

b
i tC 2

 tC i
c

i tC 3
  igti

d
i etCtC 4 so that eq.

(36) reduces to

, (37)

when the 44 matrix is now independent of time t .
Similar to eq. (35), eq. (37) can be solved by diagonalization method to give us the solution
(after transforming back to  tC i

4,3,2,1 ),
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Substitute these tC i
k into eq. (33) to have tE i and then substitute tE i into eq.

(32), one finally obtains

, (38)
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(39)

Note that t in eq. (38) is Hermitian, as it should be, and 0 reduces to obtained
in section 2.7 (below eq. (25)), as one might expect because the system is initially in the
thermal state.

3.4 The effect of laser field on separability of two coupled two-level atoms
initially in thermal equilibrium

By following the same method in section 3.1, we shall first find the partial transpose
tAT from eq. (38) and then find its eigenvalues. From eq. (38), AT reads

. (40)

To obtain its eigenvalues, the characteristic equation  0 ItAT  must be solved.
Unfortunately, this characteristic equation is very difficult to solve analytically due to the
complication of terms [1] – [7]. To proceed, the entanglement will now be studied directly by
computing the negativity using simple numerical methods provided by Mathematica
program. Note that, for computing purposes, it is more convenience to rewrite the negativity
as (Zhu; & Wang. 2008: 343-346)   
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the dimensionless parameter gx  , then we have  xg  . In this notation, it is
clear that the behavior of the x dependence on N is unchanged if the fraction g is
fixed. So, for proposes of programming and illustrating, we set the parameters as 03.1 ,

1g , 1 and 10 R . As mentioned above, the behavior of the x dependence on
N is unchanged even if is not set to be unity or  and g are set to be other values

with fixed g i.e. equal to 1.03 for this setting. Note that variation of fraction g does
not change the whole character of the x dependence on N . Although these setting do
not affect much on the x dependence on N , it affects the t dependence on N .
Since g and 2

0
2 4RgQ  appear in [1] – [7] as frequencies of oscillations in time,

values of g and 0R do affect the oscillating behaviors. Clearly, the setting 10 Rg is
not a realistic one but it is still be used here since it causes most resulting graphs easy to
be viewed. Surely, the realistic setting causes the change in frequencies but it should not
change the whole character of the t dependence on N .

Now, with these settings, the numerical results representing by many graphs are
shown and explained (in Fig. caption) as follows.

Over view & x -dependent section:

Fig. 8. : The plot of negativity N as a function of x and t . At each x , N

oscillates in time and vanishes at some t (see also in Fig.9 and Fig.10.)
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Fig. 9. : Different view point of Fig.8

Fig. 10. : Different view point of Fig.8. Notice that  0N for large x at 0t

but N constant 0 for large x at all 0t .



33

Fig. 11. : The section of Fig.8 at 10t . Here, the plot is extended to 150x in
order to see that N constant 0 for large x . Notice that in the
separable region, i.e. 88.00 x ,  0N (see inset).

Fig. 12. : The section at Fig.8 at 1.0t . Although 1.0t is still very small and
N seems to reach zero for large x , it instead reaches the small

constant 0 (see inset).
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Small x region & t -dependent section:

Fig. 13. : The plot of negativity N as a function of x and t emphasizing on the
separable region i.e. around 88.0x . As time goes, one can see the
change of states from separable at 0t to inseparable (  0N ) at
certain times and vis ver sa. However, for small (enough) x ,  0N for
all time t .

Fig. 14. : Different view point of Fig.13.
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Fig. 15. : The section of Fig.13 at 7.0x . Since 88.07.0 x is in the separable
region,  0N at 0t . As time goes, one can see tiny changes of
N which shows that, at certain times, the entangled states exist but

have small degree of entanglement (compared to what happen in Fig.18 at
31x )

Large x region & t -dependent section:

Fig. 16. : The plot of negativity N as a function of x and t emphasizing on the
inseparable region i.e. 88.0x . As time goes, one can see that the
system which is initially entangled becomes separable (disentagled) at
certain times and vis ver sa.
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Fig. 17. : Different view point of Fig.16.

Fig. 18. : The section of Fig.16 at 31x . Since 88.031x is in the inseparable
region, N at 0t is not equal to zero. However, as time goes,
N oscillates between high degree of entanglement and lower, somes

are zero.
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From many aspects of N as function of x and t above, it is worth to note that
for high temperature T (small x ), but not too high, the initial vanishing of negativity
becomes non-vanishing at certain times so, even it has a small value, one may take
advantages of the entanglement at these times for some applications. Moreover, unlike the
x -dependent on N at 0t , N at any time larger than zero does not goes to
zero for large x but goes to some constant values depending on each time t .



Chapter 4
Conclusion and Discussion

In this thesis, we have studied some aspects of the system of two coupled two-level
atoms, where the coupling is a dipole-dipole type of interaction. In particular, we have
obtained the following results:

1. In contact with a heat reservoir at temperature T, we derived the thermal state
and then used it to investigate the entanglement between two atoms. By apply the PPT-
criterion, which is necessary and sufficient for our 22 system, the thermal state was
shown to be separable for all temperatures high enough such that the certain inequality
holds. In the opposite way, if temperatures are low enough so that this inequality is violated,
our system is then inseparable or entangled. The quantitative study of this behavior was
also studied by computing the negativity, which is the quantity describing a degree of
entanglement. Since in the separable region (region of high T) there is no entanglement,
negativity is then zero while in the inseparable region (region of low T), the negativity is not
zero. In this inseparable region, the negativity goes to its peak (highest degree of
entanglement) when the coupling energy is of the same order as thermal energy and then
reaches zero again as T goes to zero.

2. When our system, which is initially in thermal equilibrium, is applied by a laser
field, the Rabi’s oscillation appearing in each atom causes some interesting situations as
follows:

a. In the separable region, for fixed T (not too high), the initial vanishing
negativity some times becomes non-vanishing, however, with small degree of entanglement.
For too high T, the negativity is always zero.

b. In the inseparable region, for fixed T, the initial non-vanishing negativity
oscillators irregularly in time. Some times it goes to high degree of entanglement and some
times to zero.

c. For fix time t , if t is very very close to zero, the T – dependent on
negativity is almost the same as one at 0t (initial thermal state) except at very low T

where negativity reaches some constants which are not equal to zero. For other times t ,
T – dependent on negativity is quite different (except at very high T where the negativity is



39

clearly zero) especially at low T i.e. the negativity goes to some constants (depends on
each t ) which is “not” zero, as T goes to zero.

It is worth to note that although the system in this thesis is a two coupled two-level
atoms, our study and thus all of the results can be used to explain a behavior of any
system of two coupled qubits if the mathematical form of their interaction is identical to us.
Moreover, since the degree of entanglement varies with time for each temperature T (not
too high), it is an interesting question weather one can take advantages of this behavior for
a realistic application.
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APPENDIX A
Coefficients in the case 0g
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APPENDIX B
Relation between coefficients

From eq. (30), we have
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