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In this thesis, the quantum entanglement of a system of two coupled two-level
atoms in thermal equilibrium under an applied laser field has been investigated theoretically.
It is shown that, before the laser field is applied, the thermal state is separable (inseparable
or entangled) for all temperatures high (low) enough such that the certain inequality holds
(is violated). Moreover, a quantitative study shows that the degree of quantum
entanglement is zero not only at high temperatures but also approaches zero in the low
temperature limit. After the laser field is applied, the degree of quantum entanglement at
each temperature oscillates in time between zero and its own maximum value except at the
very high temperature where it always vanishes. Furthermore, the degree of quantum
entanglement at each time, unlike the situation before the laser field is applied, does not

approach zero in the low temperature limit.
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Chapter 1

Introduction

1.1 Rationale

Many years ago until now, several attempts have been made in order to construct
the high speed communication apparatus by using the well-known pure quantum correlation
called “entanglement”. This entanglement enables us, in principle, to create an
instantaneous interaction between very far objects such as the famous system of two
electrons used to describe the EPR paradox (Einstein; et al. 1935: 777) and the system of
two photons or atoms used to create the cryptography and high speed computation called
quantum cryptography and quantum computer respectively. Once this kind of system can
be constructed, the instantaneous interaction due to entanglement may allow us to make
the extremely fast data transportation from one place to another place no matter how far
the distance between the two places are, e.g. the technique called quantum teleportation.
One of the main problem to create such a communication system is the decoherence due
to the contact of the system with its environment which causes the destruction of
entanglement, e.g. by the effect of temperature.

In this research, the entanglement of the system of two coupled two-level atoms will
be investigated in two aspects by using the definition of separable state given by Werner
(Werner. 1989: 4277) and the renowned Positive Partial Transposition criterion (PPT-
criterion) given by Peres (Peres. 1996: 1413). The first aspect is to study the coupling and
temperature effects on the entanglement of two coupled two-level atoms in thermal
equilibrium where the coupling between two atoms is the dipole-dipole interaction. The
second aspect is to study the effect of a laser field, which is applied to both atoms, on
entanglement of the two coupled two-level atoms initially in the thermal equilibrium, i.e. we
aim to search whether the entanglement between two atoms can be controlled by a laser

field or not.

1.2 Purposes

1. To study the entanglement of two coupled two-level atoms in thermal

equilibrium.



2. To study some effects of laser field on the entanglement of two coupled two-
level atoms initially in thermal equilibrium.
3. To pave the way for future applications especially on the field of quantum

communication.

1.3 Limitation

In this research, two atoms are considered as they have only two levels and the

interaction between them is the electric dipole-dipole interaction.

1.4 Benefits

1. To obtain some new aspects of the entanglement of two coupled two-level
atoms in thermal equilibrium.

2. To obtain some new aspects of the entanglement of two coupled two-level
atoms initially in thermal equilibrium under applied laser field.

3. To provide the primary system for further applications especially on the field of

quantum communication.



Chapter 2

Review of Literature

This chapter consists of the following topics:
2.1 Single system
2.2 Composite system and entanglement
2.3 Hidden-variable and violation of Bell's inequality
2.4 Positive Partial Transposition criterion (PPT-criterion)
2.5 Necessary and sufficient conditions for separability
2.6 Negativity

2.7 Investigation of the thermal state of two coupled two-level atoms

2.1 Single system (Sakurai. 1994: 176-179)

The density operator formalism, pioneered by J. von Neumann in 1927, describes
physical situations quantitatively with mixed as well as pure ensembles. Our general
discussion here is not restricted to spin 72 systems, but for illustrative purposes we return
repeatedly to spin 72 systems.

A pure ensemble by definition is a collection of physical systems such that every
member is characterized by the same ket |a>. In contrast, in a mixed ensemble, a fraction
of the members with relative population p, are characterized by ‘a(l)>, some other fraction
with relative population p,, by ‘a(2)>, and so on. Roughly speaking, a mixed ensemble

can be viewed as a mixture of pure ensembles, just as the name suggests. The fractional

populations are constrained to satisfy the normalization condition
2P =1 (1)
i

As we mentioned previously, ‘a(l)> and ‘a(2)> need not be orthogonal. Furthermore, the
number of terms in the I sum of (1) need not coincide with the dimensionality N of the ket
space; it can easily exceed N. For example, for spin % systems with N=2, we may consider
40% with spin in the positive z-direction, 30% with spin in the positive x-direction, and the

remaining 30% with spin in the negative y-direction.



Suppose we make a measurement on a mixed ensemble of some observable A
We may ask what is the average measured value of A when a large number of
measurements are carried out. The answer is given by the ensemble average of A, which is

defined by
<A>z Z b <afi)wa(i)>
23 e

aMa @)

where |@’') is an eigenket of A Recall that <a ) Wam> is the usual quantum mechanical
expectation value of A taken with respect to state ‘a(i)>. Eq. (2) tells us that these

expectation values must further be weighted by the corresponding fractional populations ;.

(i))[?
a' >‘ for the quantum-

Notice how probabilistic concepts enter twice; first in Ka’

mechanical probability and second, the factor p, for finding in the ensemble a quantum-

mechanical state characterized by ‘a“)>.

b'>}:

We can now rewrite ensemble average (2) using a more general basis, {

o)

(A)= Z p ;;@‘”\UXU Alb")(br
=ZU:ZU:(Z p.(b’ a(i)><a(i)‘b'>j {o'|Alb") @3)

The number of terms in the sum of the b'(b”) is just the dimensionality of the ket space,
while the number of terms in the sum of the i depends on how the mixed ensemble is
viewed as a mixture of pure ensemble which does not depend on the particular observable

A is factored out. This motivates us to define the density operator p as follows:

p=>pla)a" . 4)

The elements of the corresponding density matrix have the following form:

<b"|p|b'>zzi“pi <b"a(i)><a(i)‘b'> . (5)



The density operator contains all the physically significant information we can possibly
obtain about the ensemble in question. Returning to eq. (3), we see that the ensemble

average can be written as

b' )b’

(A= S 07l o) )

b
r(pA) . (6)

Because the trace is independent of representations, tr(pA) can be evaluated using any
convenient basis. As a result, eq. (6) is an extremely powerful relation.

There are three properties of the density operator worth recording. First, the density
operator is Hermitian, as is evident from eq. (4). Second, the density operator satisfies the

normalization condition

w(p)= X3 p (ofe oo
:Z pi<a“)‘a(‘)>

=} (7)

Third, the density operator are positive, all eigenvalue are positive (p > 0).

Because of the Hermiticity and the normalization condition, for spin 2 system with
dimensionality 2, the density operator or the corresponding density matrix is characterized
by three independent real parameters. Four real numbers characterized a 2® 2 Hermitian
matrix. However, only three are independent because of the normalization condition. The

three numbers needed are <S > <Sy> and <SZ> ; the reader may verify that knowledge of

%
these three ensemble averages is sufficient to reconstruct the density operator. The manner
in which a mixed ensemble is formed can be rather involved. We may mix pure ensembles
characterized by all kinds of ‘a“)>’s with appropriate p.’s; yet for spin 2 systems three
real numbers completely characterize the ensemble in question. This strongly suggests that
a mixed ensemble can be decomposed into pure ensembles in many different ways.

A pure ensemble is specified by p, =1 for some ‘am> — with i = n, for instance —
and p, =0 for all other conceivable state kets, so the corresponding density operator is

written as



p=|a)(a"

with no summation. Clearly, the density operator for a pure ensemble is idempotent, that is,

or, equivalently,

p(p-1)=0

Thus, for a pure ensemble only, we have

tr(p2)=1

9)

(11)

in addition to eq. (7). The eigenvalues of the density operator for a pure ensemble are zero

or one, as can be seen by inserting a complete set of base kets that diagonalizes the

density matrix, for a pure ensemble it looks like

(diagonal form)

(12)

It can be shown that tr(pz) is maximal when the ensemble is pure; for a mixed ensemble

tr(pz) is a positive number less than one.

Given a density operator, let us see how the corresponding density matrix can be

constructed in some specified basis. To this end, we first recall that



b’ )b’

o\

)

ja)fer]= 22

b b

: (13)

This shows that we can form the square matrix corresponding to ‘af”><oc (”‘ by multiplying

the column matrix formed by <b’ a(i)> with the row matrix formed by <a (i)‘b"> which, of

course, is equal to <b"‘a(i)> . The final step is to sum such square matrices with weighting

factors p,, as indicated in eq. (4). The final form agrees with eq. (5), as expected.

2.2 Composite system and entanglement
Consider the composite system described by the vector (Hilbert) space V consisting
of two subsystems described by V,; and V, physically, V of the composite system can be

written as V; ®V,, called the tensor product of V; and V, defined as follows.

Definition of tensor product (Cohen-Tannoud;ji; et al. 1977: 154-157)

Let Vi1 and V; be two vector spaces of dimension N; and N respectively. Vectors
and operators of these spaces will be assigned an index, (1) or (2), depending on whether

they belong to V, or V,. The vector space V is called the tensor product of V; and V,:
V=V,®YV,

if there is associated with each pair of vectors, |g0(1)> belonging to V; and |;((2)> belonging

to V,, a vector of V denote by:

o)) ®]2(2))

which is called the tensor product of |q0(1)> and |;{(2)> this correspondence satisfying the
following conditions :

1. It is linear with respect to multiplication by complex numbers

Ae@)]®|x(2)) = le@)®] 2(2))]
lp0)® [ 1(2)]= ull o) ®[£(2))]

2. It is distributive with respect to vector addition:

o) 2:(2))+| 22(2)] = |0(1)) ®| 22(2))+ |0(1)) ® | 1,(2)



[,() + 0,0 @] 1(2)) = |0, @) ®| 2(2)) + |0, V) ®] £(2))

3. When a basis has been chosen in each of the space V, and V,, {|u,(1)>} for V,
and ﬂvl (2)}} for V,, the set of vectors |ui (1)>® |vI (2)> constitutes a basis in V. If N; and

N, are finite, the dimension of V is consequently NiN..

Vectors of V
1. Let us first consider a tensor product vector, |(p(1)>®|)((2)> Whatever |(0(1)>
and |)((2)> may be, they can be expressed in the {[ui(l»} and {[\4(2»} bases

respectively:

o(1)= Yaju )
22)= Xhaiv(@)

The expansion of the vector |g0(1)>®|;((2)> in the {[ui(l)>®|\/, (2)>} basis can be written

as:

lp@)®|x(2))= > ab |u 1) ®v(2))
il
Therefore, the components of a tensor product vector are the products of the
components of the two vectors of the product.
2. There exist in V vectors which are not tensor products of a vector of V; by a
vector of V.. Since {|ui(1)>®|v| (2)>} by hypothesis constitutes a basis in V, the most

general vector of V is expressed by:

|V’> = ZI:C.J |ui (1)>® |V| (2)>

Given N;N, arbitrary complex numbers G, it is not always possible to put them in the form
of product, aby, of Nt numbers & and N, numbers b, . Therefore, in general, vector
|qo(1)> and |)((2)> of which |q/> is the tensor product do not exist. However, an arbitrary

vector of V can always be decomposed into a linear combination of tensor product vectors.



The scalar product in V

The existence of scalar product in V, and V, permits us to define one in V as well.

We first define the scalar product of |q0(1);((2)>:|(0(1)>®|;((2)> by
lo'Dx'(2)=]e'1))® |x'(2)) by setting:

(o' Wx (e (2)) = (o'l e@)z'(2)] 2(2)

For two arbitrary vectors of V, we simply use the fundamental properties of the scalar
product, since each of these vectors is a linear combination of tensor product vectors.

Notice, in particular, that the basis {| (1)\/I > |u >®|V, >} is orthonormal if
each of the bases {[ui (1)>} and ﬂv, (2)>} is:

(U (v @) u @ (2)) = (u @)]u @)% (2)|v 2)

=58

i

Tensor product of operator

1. First, consider a linear operator A(l) defined in V,. We associate with it a linear
operator Z\(l) acting in V, which we call the extension of A(l) in V, and which is
characterized in the following way : when A(l) is applied to a tensor product vector

|q0(1)> ® |)((2)> one obtains, by definition:

Anllow)®|7(2)]=[Atfe)]®|x(2)

The hypothesis that ;\(1) is linear is then sufficient for determining it completely. An

arbitrary vector |1//> of V can be written in the form |y/> ZCI | |u >®|\/I > then gives

the action of R(l) on |1//>:

Z J[A(l ]®|V| (2))

We obtain in an analogous manner the extension I:D;(Z) of an operator B(Z) initially

defined in V..
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2. Now let A(l) and B(Z) be two linear operators acting respectively in V, and V..
Their tensor product A(1)® B(2) is the linear operator in V, defined by the following

relation which describes its action on the tensor product vectors:
(A @B(2)[e(V)® | x(2))]= [AL)e)]®[B(2)] «(2))]
Here also, this definition is sufficient for characterizing A(l)® B(2).

Uncorrelated states (Werner. 1989: 4277),

Consider a composite quantum system described by a Hilbert space V =V, ®V;.
An uncorrelated state of this system is given by a density operator p acting in V of the
form p=p" ® p®, where p” and p® are the density operators acting in Vs and Vg
respectively. This is equivalent to say that the expectation value Tr(pA® B) for the joint
measurement of observable A and observable B on the respective subsystem always

factorizes,

Tr(p A®B)=Tr(p- A®1)Tr(p-1® B)
=Tr (p"AJTr(0®B). (14)

Uncorrelated states can be prepared vary easily by using two preparing devices for system
A and B, which function independently and yield the states pA and pB respectively. Then
the factorization property means that if the measuring devices described by A and B also
operate independently, we are simply conducting two separate experiments at the same

time and the classical multiplication rule for probability applies.

Correlated states and entanglement (Werner. 1989: 4277)

Suppose that each of the two preparing devices has a switch with settings | = 1,...,
n, and, with setting i, the device produces system in the state piA and piB. Suppose we
have also a random generator, which produces number i = 1,..., n with probability p,. We
can combine these three devices into a new preparing apparatus by the following
prescription: In each individual experiment, one first draws a random number i € {1,..., n}.
The switches of the two preparing devices are then set according to the result (see figure 1.

below). Clearly then, the expectation of a measurement of observables A and B will be
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Common
source (p,)
1.234...]
A(V,) B (V)
_.1' @ ;5 -
P P, P, > P
P < L@ p; > o

Fig. 1. : Apparatus prepared for the construction of classically correlated state.

> pTr(p Ak (p°B)=Tr(p-A®B)

with the density operator
p:ZpiPiA®piB (15)

The physical source of these correlations is the random generator, which can be chosen as
a purely classical device. Therefore, we shall call a density operator (a state) classically
correlated or disentangled if it can be represented or approximated by density operators
of the form eq. (15). States that are not classically correlated is called EPR correlated or
entangled. Classical correlation does not mean that the state has actually been prepared in
the manner described above, but only that its statistical properties can be reproduced by a

classical mechanism.

2.3 Hidden-variable and violation of Bell’s inequality (Werner. 1989: 4277)
For any set of correlations determined in an experiment one can raise the question
whether these correlations can be described within a purely classical “hidden-variable”

theory. Such a theory is based on some probability space (2, £, M ), called the space of
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hidden variables, consisting of a o - algebra X of subsets of (Q and a o - additive
normalized measure M on X. For any measuring device A with possible outcome v, one
demands the existence of a measurable response function @ > FA(v,a))eiR interpreted
as the probability that the outcome v is obtained in an experiment with known value
@ € Q) of the hidden variables. Therefore the response functions must satisfy FA(v,a)) >0

and zv FA(v,a)):l for every @ € (2, where the sum is over all possible outcomes of the

measurement of A. A hidden-variable model for some set of correlations is then given by a
probability space and a collection of response functions such that the probability in an
experiment with a measuring device A on system A and a device B on system B for
obtaining the result v on A and simultaneously the result 1 on B is given by the
expression IM (do)F,(v,0)Fs (1, o).

Any hidden-variable model can be extended to measurements with continuous
outcome parameters, and can be modified to a “deterministic model” in which the response
functions take only the value 0 and 1. Therefore we shall stay with the above simple
definition. The existence of a hidden-variable model is exactly the hypothesis of the usual
derivations of Bell’'s inequalities, the “locality” of the theory being expressed by the fact that
the response function for A is independent of B and vice versa. It is known that while these
inequalities are necessary conditions for the existence of a hidden-variable model, they are
not sufficient. On the other hand, the set of correlations admitting hidden-variable model is
a convex set, and as such is completely described by some set of linear inequalities. We
shall refer to any one of these inequalities as a (generalized) Bell's inequality. Despite some
partial results in this direction, no efficient procedure for obtaining all generalized Bell’'s
inequalities is known.

An interesting question is, then, whether or not the correlations described by a
quantum state of a composite system admit a hidden-variable model. To answer this
question, let us consider the measuring devices of system A and B represented
respectively by observables, i.e. by Harmitian operators A€V, and B €V with spectral
resolution Azzwoszv and B:z# B.,Q, eigenvalues «,, B, and eigenprojection
P, Q,. We then say that a state p €V, ®V; admits a hidden-variable model if there are
a probability space (Q,Z,M) and response functions, defined for all Hermitian

A= Zvova’v eV, and B= ZH B,Q, €V with discrete spectrum, such that for all A B,

v and u,
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_[M(da))FA(v,a))FB(u,a))=Tr(\N-Pv ®QH.) (16)

We claim that all classically correlated states admit hidden-variable models, and hence
satisfy all Bell inequalities. This can be proven quite simply for convex combinations of
products as in eq. (14). We then take Q = {1,..., n}, M({r}) = p,, FA(v,r):Tr(p,A- P ) and
define Fg analogously. Then eq. (15) implies eq. (16). We omit the somewhat technical,
but straightforward approximation arguments needed to extend this result to all classically
correlated states.

We conclude that every state violating some generalized Bell's inequality, i.e. any
state not admitting a hidden-variable model, cannot be classically correlated, i.e. is EPR
correlated. The well-known experiments demonstrating a violation of Bell's inequalities can
thus be taken as direct experimental evidence for the existence of EPR correlated states.
The vital importance of such states for quantum theory is further underlined by the fact that
they are automatically generated by an interacting time evolution. To be precise, any unitary
time evolution, which takes all classically correlated initial states again to classically
correlated states, necessarily factorizes into the product of two separate time evolutions.
Consequently, the ground state of an interacting system, which is often especially easy to
prepare, is usually not classically correlated. The states of a relativistic quantum-field theory
are even more universally EPR correlated, since any state of finite energy violates Bell’s
inequalities for suitable space like localized observables.

Since any state violating some generalized Bell’s inequality is EPR correlated, one
might conjecture that the converse holds, i.e. that every state admitting a hidden-variable
model is classically correlated. This conjecture is indeed true for pure states of a composite
quantum system, given by unit vector in V, ®V;, but is false for general mixed states. In
the next section, another criterion called “PPT-criterion”, which is claimed to be more

sensitive than the violation of Bell's inequality, will be reviewed.

2.4 Positive Partial Transposition criterion (PPT-criterion) (Peres. 1996: 1413)

A striking quantum phenomenon is the inseparability or entanglement of composite
quantum systems. Its most famous example is the violation of Bell’s inequality, which may
be detected if two distant observers, who independently measure subsystems of a
composite quantum system, report their results to a common site where that information is

analyzed. However, even if Bell’s inequality is satisfied by a given composite quantum
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system, there is no guarantee that its state can be prepared by two distant observers who
receive instructions from a common source. For this to be possible, the density matrix p

has to be separable i.e. it can be written as
P:ZpipiA®piB (17)
i

where the positive weights [, satisfy Zpi =1, and where p/ and p® are density
i

matrices for the two subsystems. A separable system always satisfies Bell's inequality, but
the converse is not necessarily true. In the work by Peres (Peres. 1996: 1413) a simple
algebraic test is derived, which is a necessary condition for the existence of the
decomposition (17) i.e. for the existence of the separability of the state p . Peres (Peres.
1996: 1413) also give some examples showing that this criterion is more restrictive than
Bell's inequality, or than the Ol-entropy inequality.

The derivation of this separability condition can be done by writing the density

matrix elements explicitly, with all their indices. For example, eq. (17) becomes

P = 2 PP )08, (18)

Latin indices refer to the first subsystem, Greek indices to the second one (the subsystems
may have different dimensions). Note that this equation can always be satisfied if we
replace the quantum density matrices by classical Liouville functions (and the discrete
indices are replaced by canonical variables p and q). The reason is that the only constraint
that a Liouville function has to satisfy is being non-negative. On the other hand, we want
quantum density matrices to have non-negative eigenvalues, rather than non-negative
elements, and the latter condition is more difficult to satisfy. Let us now define a new
matrix,

o (19)

mu,nv = pny,mv
The Latin indices of p have been transposed, but not the Greek ones. This is not a
unitary transformation but, nevertheless, the ¢ matrix is Hermitian. When eq. (17) is valid,

we have
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o= plpf ®pf (20)

Since the transposed matrices (piA)T = (piA)* are non-negative matrices with unit trace,
they can also be legitimate density matrices. It follows that none of the eigenvalues of o is
negative. This is a necessary condition for eq. (17) to hold. This condition is called positive
partial transpose (PPT) criterion.

Note that the eigenvalues of o are invariant under separate unitary
transformations, U * and U® of the bases used by the two observers. In such a case, p

transforms as
po>UreUs U eu®)
and we then have
s> U~ authLur eue)
which also is unitary transformation, leaving the eigenvalues of ¢ invariant.

2.5 Necessary and sufficient conditions for separability

Horodeckis (M. Horodecki; et al. 1996: 1) provide necessary and sufficient
conditions for the separability of mixed states and find that, for 2®2 and 2 ® 3 systems,
the positive of the partial transposition of a state is not only necessary but also sufficient for
its separability. However, this is not true for the general systems. We shall use this fact to
investigate the entanglement of the system of two coupled two-level atoms, which is the

2 ® 2 system.

2.6 Negativity

Negativity (Vidal; & Werner. 2002: 032314) was introduced by Vidal and Werner in
order to measure the degree to which o (the partial transpose of p defined in section 2.4)
fails to be positive. Among quantities capable of measuring the so-called “degree of
entanglement”, negativity (N (p)) is the one which is suitable for us to compute the degree

of entanglement of our problem. It is defined by



16

o], -1
N(p)= "l =
(p) 5

Where ||0'||1 =Tr./o'o is the trace norm of the partial transpose (of p ) o . This negativity

is related to its eigenvalues as follows:

ol _1 21 1+ 2 | | |-1
) o1 2 | kzj S

Where 4, is an eigenvalues of o and u, = 4, <0 is a negative eigenvalues of o .
Note that if non of its eigenvalues are negative, then N(p)=0. However, this
implies that there is no entanglement only in the case that PPT-criterion is also the

sufficient condition.

2.7 Investigation of the thermal state of two coupled two-level atoms

T
—— S——
ho, dipole-dipole hog
interaction
—_—
Atom A Atom B

Fig. 2. : System of two coupled two-level atoms in thermal equilibrium at absolute

temperature T.

Our system of interest consists of two atoms (see Fig.2. above) which can be

described by the following Hamiltonian operator

haw how
H= 2A0'f+TBaf+hg(0'f®of+0'f ®0'_B), (21)
hCO A
where 7/\02 represents the energy of atom A,

2
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M’ZBGE represents the energy of atom B,

he (gf ®gi +o‘ﬁ ®gf) represents the dipole-dipole interaction between
atom A and atom B (g is the coupling strength),

and o, (Pauli spin matrix), o, (Spin flip matrices) are defined by

R AN I )

Substitute these matrices into Hamiltonian (21), the result is

(wA+wB)% 0 0 0
0 2 gh 0
H= 2 - 0=w,—wg (22)
0 B - 0
y 2
0 0-—0 —(a)A+wB)%

Here, we have used the relations G§’+’_ =0,, ®1, and GZB,# =1, ®c,,_ . Energy

i+

eigenvalues and energy eigenvectors can be obtained by considering the characteristic

polynomial of Hamiltonian H,

(a)A+a)B)Z—E 0 0 0
0 Ui gl 0
det(H — E1)= 2 s =0 (23)
0 g -2 _E 0
2
0 0 0 —(a)A+a)B)z—E

which yields four energy eigenvalues,

Elz(wA+a’B)Z EZ:Z 5% +4g°

By =-2\82 4497 | Ey=—{wptog))



18

and also the corresponding energy eigenvectors,

1 0 0 0
0 sin 6 cos 6 0

E)= o] E.)= cosf | ’ Ea)= —-sn6| Ei)= 0 (25)
0 0 0 1

where R=+v8°%+4g° , cosh= R—9 , sSinf= 29

J(R=6F + 4¢? (R-6 + 492

In thermal equilibrium at absolute temperature T, density operator (state) of the system can

be written as

1 1 2
i’ Z P KT

By using the eigenvectors (25) and eigenvalues (24), the above density operator can be

written in the matrix form, called density matrix, as follows:

p=7e =32 e ENE

—ﬁthA+coB)/
e 2 0 0
- PR PR —,BhR ﬁhR

0 e 25n20+e 72 cos?0 / /ZJsinecose 0
_1
-z -pnR/ PR _pR iR

0 [e /2—e 2Jsin@cos@ e /2c0320+e /Zsinze

ﬂhLﬂA+wB)/
0 0 0 e 2

In the next chapter, we shall use this density operator which represents the state of

the system to investigate separability/entanglement via the PPT-criterion and negativity.




Chapter 3

Research Methodology and Results

In this chapter, the method given by Peres (Peres. 1996: 1413) and Vidals &
Werner (Vidal; & Werner. 2002: 032314), i.e. the PPT-criterion and negativity, will be used
to investigate the separability of the system of two coupled two-evel atoms in thermal
equilibrium described in section 2.7. Furthermore, the method in quantum optics used to
describe the atom-field interaction (Meystre; & Sargent, Ill. 1998: 66-75) will also be applied
to our problem in order to explain the effect of laser field on the entanglement of our
system, which is initially in thermal equilibrium, when both atoms are coupled by this laser

field.

This chapter consists of the following topics:
3.1 Separability of two coupled two-level atoms in thermal equilibrium
3.2 Two-level atom in a laser field: Rabi’s oscillation
3.3 State of two coupled two-level atoms initially in thermal equilibrium under an
applied laser field
3.4 The effect of laser field on separability of two coupled two-level atoms initially in

thermal equilibrium

3.1 Separability of two coupled two-level atoms in thermal equilibrium

In this section, entanglement of the system consisting of two coupled two-level
atoms that have the dipole-dipole interaction between them in thermal equilibrium
(Locharoenrat; & Khemmani. 2008: 328-334.) is considered by using the definition of
separable state given by Werner (Werner. 1989: 4277) and the PPT-criterion given by
Peres (Peres. 1996: 1413). Werner said that any system consisting of two subsystem A and

B is separable if the density operator of a system can be written or approximated in form
A B
p=>.pp ®p°, (26)
i

where {p} is the probability distribution
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{piA} and {piB} is the density matrix of subsystem A and B respectively

To apply PPT-criterion, we first need to find the partial transposition of p i.e. pTA
where the subsystem A is chosen, without loss of generality, to be transposed
((injp™

necessary condition for separability, states that if p is separable, then all of the

jm>:=<jn|p|im>). Once the p™ is found the PPT-criterion, which is the

eigenvalues of /oTA must be positive, or equivalently, if at least one of the eigenvalues of
pTA is negative, then the state p is inseparable or entangled. Fortunately, since our
system of interest is the 2® 2 system where the PPT-criterion is also a sufficient condition
for separability as proved by Horodeckis (M. Horodecki; et al. 1996: 1), the signs of all
eigenvalues of pTA thus completely describe the separability of our problem. From the

density matrix p, one can find pTA and all of its eigenvalues as shown below.

- /ﬁ({uA +wB)/ — BiR BHR
e 2 0 0 [e 2 —e 2}sinecos(9
- BiR IR
_1 0 e /Zsin2(9+e 2 cos?0 0 0
z - AR ﬂth

0 0 e “2cos’0+e 72s8n%0 0

- 17”7 ﬁmy &(wA+ (UB)/

e 2 _e 72 |5n6 cosO 0 0 e 2

as

S
2 /R
2

Azzlcosh (ﬂh(w +o )J+\/cosh Z(M(w +o ))+4g smhz(ﬁhR)—l ,

2 VA 8l) 7 2 R2 2

2

to= Lo (2, v )j_Jcosh (Pl 0, )25 s P1R) o

2 A B Z 2 B RZ 2

PN
N
Il
8
%
VR
=
S
)
——
+
[92]
-}
>
VR
=
St
Py
N—
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Notice that A,, 1, and A, are always positive, while only the third one, i.e. 4, can be
iR j L0%+4g°
KT )~ 492

resonance case (6 =0), the above positive condition for 4, reduces to sinhz(hg/kT)gl

. For the

positive or negative. Clearly, A, = 0 if and only if sinhz(

which shows according to Fig.3. how the state of the system is in separable or inseparable

(entangled) state depending on the parameter X = hg/kT .

25 )
2| ' sinh?(x)
15 r E
Separable I nsepar able
1 )
0.5 I '
L ‘ ‘ x = hg/KT
0.2 0.4 0.6 2.8 ' 1 12 14

Xy ~0.88

Fig. 3. : Condition for separability in resonance case.

From Fig.3. the intersection of the dash line on X-axis, which is about 0.88, indicates in the
resonance case that the system is separable when hg/kT <0.88 and is inseparable when
hg/kT >0.88. In other words, the system is separable when the temperature is high
enough such that the inequality hg/kT <0.88 holds and the system is inseparable when
the temperature is low enough such that this inequality is violated. Furthermore, a
quantitative version of this result can be studied by calculating the negativity as it can tell
how much the degree of entanglement is. From section 2.6, the negativity is defined by the
sum of an absolute value of negative eigenvalues of partial transposition of o . In our case,
since only A, (shown under eq. (27)) can be negative, the negativity N(p) is just

N(p)= |/”13| Hence, in resonance case, one simply obtain the following graph.
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Vo)

o.oo8 |
0.o0o0e
0.oo48 F

1 z 3 ]
.28

e

L]

Fig . 4. : Plot of negativity N(p) as a function of X at w =2 and g =1. Notice
that N(p):O for O0<Xx <0.88 (separable region) and then goes up for
x> 0.88 (inseparable on entangled region) to its peak and finally reaches to

zero again for large X.

This Fig.4 clearly shows N(p)= 0 in the region 0< X <0.88 (called “separable region”)
since all eigenvalues are positive while in the region X > 0.88 (called “inseparable region”),
N(p)#0 since A, <0. In the inseparable region, N(p) reaches its maximum value at
X~ 1.3 or at 7ig KT and reaches zero at large X (low T). For different setting such as

o = 1.03 the graph are shown below.

N(p)

x

z 4 E B 10 1z 14

Fig . 5. : Plot of negativity N(p) as a function of X at @ =1.03 and g =1. Notice
that this graph has the same behavior as the one in Fig.4, however
® =1.03<2 causes N(p) having smaller peak and going to zero at

larger X
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Note that, for most realistic settings, ®/g >>1 so we will consider only the case
®/g >1 in this thesis. In the next two sections, we shall consider the effect of laser field on
two-level atom and thus on the entanglement of two coupled two-level atoms which is

initially in thermal equilibrium.

3.2 Two-level atom in a laser field: Rabi’s oscillation

An atom can be interacted with a laser field because an atom composed of changes
while a laser field is an electromagnetic wave. In general, this interaction is truly
complicated and thus be explained via the multipole moments of increasing order. However,
in most practical cases, the wavelength of the field is large compared with the size of an
atom so in this “long wave length approximation”, the multipole reduced to an electric dipole
—d-E(t),

where d is an electric dipole operator and E(t): XE, Cos(vt) is an electric field having

so that the Hamiltonian of an atom field can be simply written as H =H_,

linear polarization in X -direction, amplitude E, and frequency v . If the frequency v of a

field is tuned so that it closes to w between some two levels of an atom, this atom can

then be approximated to have only these two levels. In this case, the Hamiltonian of an

atom is simply H, .

ho
%, % where o, = |a><a|—|b>(b| and 7 is the energy gap of
these two level (see Fig.6 below). Here |a> and |b> are upper and lower states
respectively. Note that we have chosen the energy zero to be half way between the upper

and lower levels.

Ao
|{I>= E_’j: 2 [ ]
o)
ho
= Atfom

Fig. 6. : Two-level atom having energy gap %

Now, in the long wave length approximation (also called dipole approximation) and

two-level approximation, Hamiltonian of the system can be written as
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H:@GZ_dXEO
2

Cos(vt). Furthermore, if the interaction is weak enough, only the term

—iut

of cos(vt) is enough to be kept. This is called the “rotating-wave approximation”.

Hence, in the case that all these approximations above are satisfied, Hamiltonian of the

system can be written as
Yo (se™ +0 €") (28)

where o, =|a)b|, o =|b><a|, and p = <a|dx|b>. Note that, without loss of generality,
f can be set as real and positive.
In order to see the effect of field on the population between two levels, let us

consider the general state |l// (t)> of the system written in the basis {| a), |b>} as

—-ivt

() =C,(0e 2 [a) +C, (te? [b). 29

Substitute this equation into Schrodinger equation with Hamiltonian at the form (28), one

1 b g 5

where 6 =w —v is called the “detuning” and R, =goE0/h is called the “Rabi flopping

obtains

frequency”. In the resonance case i.e. 6 =0 or @ =V, this above equation can be solved
easily as,
for the initial condition Cb(O)z 1 and Ca(O)z 0:

C,(t)=isin(Rit/2) and C,(t)=cosR,t/2),

and for the initial condition Cb(O)z 0 and Ca(O): 1:
C.(t)=cos(Rit/2) and C,(t)=sin(Rt/2). (30)
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From eq. (30), it is clean that |Ca(t)|2 and |Cb(t)|2 oscillate between values 1 and 0 with
frequency R,, therefore the probability of finding the atom on the upper or lower level
oscillates between two levels with frequency R,. This oscillation is called the “Rabi’'s
oscillation” and that is why R, is called Rabi’s flopping frequency.

In the next section, a laser filed will be applied on both two-level atoms which are

coupled together by a dipole-dipole interaction and initially stay at thermal equilibrium.

3.3 State of two coupled two-level atoms initially in thermal equilibrium under

an applied laser field

‘E
— I
heo heg
Atom A ' AtmomB

Fig. 7. : System of two coupled two-level atoms initially in thermal equilibrium under

the applied field.

Our system of interest now consists of two interacting atoms, each interacts with the
laser field, E=>?E0 cos(vt) (see Fig.6. above). Combine eq. (21) and (28), the Hamiltonian

of this system can be written as

hw ho
H="2c)+ Bof+hg(G_A®G+B+G+A®G_B)
2 2
1 ( A-ivt Aévt) 1 E( B it Bévt)
—EgoEO ce" +o’ —Ego Ao € +o” , (31)
l A —ivt A . ivt . .
where —EsoAEo (cne +o_e )represents the interaction energy between atom A

and field,
and
B B vt

1 .
—EpBEO (a+ e +o°¢ )represents the interaction energy between atom B

and field.
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Here ¢, and ¢, are the matrix element of the dipole operator of atom A and B along the
polarization of laser field respectively. For simplicity, we now treat these two atoms as
identical i.e. we have @, =p5; = .

Now let us consider the density operator or the state of the system at time t which

can be written as

where |Ei (t)>= icf)(t)e#

with E, and |Ek> defined in eq. (24) and (25).

Substitute |Ei (t)> from eq. (33) into the time-dependent Schrédinger equation, i.e.

4 _iEt
E,)

. d - :
—> C(t)e
in g Cs

—iEt

E )= (H,+H, ic'
k=1

where H, is the first two terms and H, is the last two term the right hand side of eq. (31)
respectively, one obtains the four coupled first order ordinary differential equations of the

interaction-picture coefficient CS)(t); i,k=1,23,4as

2R0

ct)
dlcon)|
dt V)|
;)
0 (sno+cosd)e”! ity +o,X (cos9-sinde” i o, 0 ct)
(sm9+cosg)e'(v o, )t 0 0 (sing+cosg)e” i +at c”t)
(cos@—sm@)e( o) 0 0 (cos® -single i+, c )
L 0 (sin@Jrcose)e'("_a’z“)t (cos@—sjne)e'(v_“’”)t 0 c’ ()
(34)

with the initial condiion C{'(0)=5,, where @, ==  and Ry =272>0,

Before going to solve this equation, let us first examine the trivial case where g =0 (no

coupling) and 6 = A =0 (resonance), here W, =Wy =®, 6 =W, —wz, A=v-w. For
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g =0, one can verify at the beginning that |El>, |E2>, |E3>, |E4> in eq. (25) where
sind =1 and cosf =0 is the eigenvector of Hamiltonian (22) with the corresponding
eigenvalues (24), when g =0. Hence, by assigning Siné by 1 and cosf by 0, eq. (34)

reduces to

) 0 1 -1 0y’
dic’M)|_ig 1 0 0 1jc )
dtjc’@) 2 %-10 0 -c)|

c.’) 0 1 -1 0Jc”(

with the initial condition CS)(O): O, - This differential equation can be solved by
diagonalization of the 4x4 matrix in the right hand side of eq. (35), please see the solution
in the appendix A. Once all C,‘((i)(t) are known, |Ei (t)> in eq. (33) is also known and thus
p(t) in eq. (32) is then known. Now, let us write down the density operator of subsystem A

and B in a single formula as

2 AB
PAB(t)zzeiﬂEi( i
i1

i(A,B)(t)><i(AB) (t)‘,

where [142))) = 3" Ao (e 7 ), (248 1)) = 3 1G4 ()= k).

2
k=1 k=1

Here, |1> and |2> are |a> and |b> defined in section 3.2 respectively and El(A’B) = %

EéA’B) = —%0. c&ig’(t) here means the probability amplitude of finding atom A, B in the

state |K) (k=1 2) at time t if A B is initially in the upper state |1). Similarly, C{*®)(t)
means the probability amplitude of finding atom A, B in the state |k>at time tif A Bis
initially in the lower state |2> Note that since C&X’g)(t) and C*®)(t) are all known from
eq. (30), one can find the relation between these amplitudes and the amplitude CS)(t)
obtained in the appendix A. This relation (see appendix B) thus allow are to verify that
p(t):pA(t)® pB(t), as one would expect since, in the case g =0, two atoms are

independent.
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Now, let us consider the very interesting case i.e. g # O with resonance condition
0 = A =0. In this condition, one can see that Sin@ =cosé =ZI/\/§ (see the definition of
cos@ and sin@ under eq. (25)) and therefore eq. (34) becomes

c” () 0 e* 0 0)c()
d|c’t)|_iR[e* 0 0 & |c)
— . =— ) (36)
dt|c’@)| ~v2{0 0 0 0 [cOq)

c () 0 e* 0 0)ci@

Notice that the 4 x4 matrix in the right hand side of eq. (36) still depends on time t so in

order to apply the diagonalization method, we first make a transformation

CO(t)=clte®, CL(1)=cli) C (=00 C5 ()= CY (k™ so that eq

(36) reduces to

c(t) 29 V2R, 0 0 [c)
d{c’t)| i|v2R, 0 0 2R |CcP()
dcOnl 2 o o o o |cOp

ci”t) 0 2R 0 29 )c{()

when the 4x 4 matrix is now independent of time L.
Similar to eq. (35), eq. (37) can be solved by diagonalization method to give us the solution

(after transforming back to Cl(i,;’3y4(t)),
Cl(l) (t)— COSQt ig Sing gia/2. Cz(l)() I\/_Ro Qt ga/2
22 Q 2 Q

C?fl)(t):O, Cgl)(t): 2 Zlcoth |Q %:|e—igt/2’
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for i =2:
Cl( 2) (t): @gnge—igﬂz’ Cg 2) (t): {Cosg_ ggng}e@/z’
Q 2 2 Q 2
c? )=0, c)="2R V2R, 0 Q g
3 ’ 4 Q 2 s
for i = 3:
C(t)=0, C?(t)=0, C{* (t)=1, C{* (t)=0,
for i =4:
Ci(t)=- cosQt |gsing ez, CiY(t)= "/_Rv Qteguz
2 2 Q Q

CY(t)=0, C{”(t)= r 2[C03Qt IQ %}e—‘w.

Substitute these C,ﬁ”(t) into eq. (33) to have |Ei (t)> and then substitute |Ei (t)> into eq.

(32), one finally obtains

0 @ 2B
Bt [ 8]

*O=Zl 15 @ 6 9
g 6 [

Where  [1]= cosh(Bha)- [cod2 Jeos(Z )+ Zsin(%)sin(2 |sinh(ra)
+ %?si nz(%le‘ﬁhg — cosh(pho)),

[21= ﬁLS‘”( )th(ﬂhw)e ﬁlsm( )cos( )cosh(Bre)e
+ [Rsin(2)cod@)e + Frsin? (2 s + Lesin?(2)cosh( o ),

[3]:2(?;'5sin2(92‘—1e*"”9 — cosh(Bho)]-ifcos(2 Jsin(2) - ism( Jeos()Jsinh(ha)
[4]= %stin2 (2 cosn(Bhw) — e ]+ cosh(phg) ,

[5]= 2% o (Qt Icosh (Bho)- ﬁhg] sinh(Bng),
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[6] = sin(%)sinh(BreoJe* — Ssin(%)cos % )cosh(Br e

Rog Q) (@) gt R g Z(Q)_:.igt}_:.—ﬂhg R g Z(Q) igt
+ [Qsm(zcosze +oksin?($ +2sin?(3 Joosh(pnw e,

[7]= cosh(p) + loosF)cos($ )+ $sin(%in(%lsinh(prev)
+ %sinz(%)[e*ﬂhg —COSh(ﬂha))]. (39)

Note that p(t) in eq. (38) is Hermitian, as it should be, and p(O) reduces to p obtained
in section 2.7 (below eq. (25)), as one might expect because the system is initially in the

thermal state.

3.4 The effect of laser field on separability of two coupled two-level atoms
initially in thermal equilibrium
By following the same method in section 3.1, we shall first find the partial transpose

pTA (t) from eq. (38) and then find its eigenvalues. From eq. (38), pTA reads

122 o
12 W oE E
O E W e )
|

2
5] [6] [6] [7]

To obtain its eigenvalues, the characteristic equation ‘pT“(t)—M‘=O must be solved.

Unfortunately, this characteristic equation is very difficult to solve analytically due to the
complication of terms [1] — [7]. To proceed, the entanglement will now be studied directly by
computing the negativity using simple numerical methods provided by Mathematica

program. Note that, for computing purposes, it is more convenience to rewrite the negativity
4

as (Zhu; & Wang. 2008: 343-346) N(p)= ZmaX(O, —ﬂi), where /, is an eigenvalues of
i=1

/oTA (t) which is clearly equal to the original definition i.e. the sum of absolute value of the
negative eigenvalues.

To study the numerical results of the negativity depending on temperature T and
time t, parameters i.e. @, g, i, R, must be set. Notice that @, g, 7 always appear

together with 8 in [1] — [7] (see eq. (39)) in the form BAg and Pho = ﬁhg(a)/g). If we let
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the dimensionless parameter X = fhg, then we have fho = (a)/g)x . In this notation, it is
clear that the behavior of the X dependence on N(p) is unchanged if the fraction ®/g is
fixed. So, for proposes of programming and illustrating, we set the parameters as @ =1.03,
g=1, 7=1 and R, =1. As mentioned above, the behavior of the X dependence on
N(p) is unchanged even if 71 is not set to be unity or @ and g are set to be other values
with fixed /g i.e. equal to 1.03 for this setting. Note that variation of fraction w/g does
not change the whole character of the X dependence on N(p). Although these setting do
not affect much on the X dependence on N(p), it affects the t dependence on N(p).
Since g and Q:w/gz+4R§ appear in [1] — [7] as frequencies of oscillations in time,
values of g and R, do affect the oscillating behaviors. Clearly, the setting g=R, =1 is
not a realistic one but it is still be used here since it causes most resulting graphs easy to
be viewed. Surely, the realistic setting causes the change in frequencies but it should not
change the whole character of the t dependence on N(p).

Now, with these settings, the numerical results representing by many graphs are

shown and explained (in Fig. caption) as follows.

Over view & X-dependent section:

Fig. 8. : The plot of negativity N(p) as a function of X and t. At each X, N(p)

oscillates in time and vanishes at some [ (see also in Fig.9 and Fig.10.)
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Fig. 11. : The section of Fig.8 at t = 10 . Here, the plot is extended to X =150 in

order to see that N(p)—) constant # 0 for large X. Notice that in the

separable region, i.e. 0<x< 0.88, N(p)=0 (see inset).

Fig. 12. : The section at Fig.8 at t = 0.1. Although t = 0.1 is still very small and
N(p) seems to reach zero for large X, it instead reaches the small

constant # O (see inset).
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Small X region & t -dependent section:

Fig. 13. : The plot of negativity N(p) as a function of X and t emphasizing on the
separable region i.e. around X~ 0.88. As time goes, one can see the

change of states from separable at t = 0 to inseparable (N(p);t 0) at

certain times and vis ver sa. However, for small (enough) X, N(p): O for

all time t .

Fig. 14. : Different view point of Fig.13.
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Fig. 15. : The section of Fig.13 at Xx=0.7. Since x=0.7 < 0.88 is in the separable
region, N(p)= O at t = 0. As time goes, one can see tiny changes of
N(p) which shows that, at certain times, the entangled states exist but

have small degree of entanglement (compared to what happen in Fig.18 at
x=31)

Large X region & t-dependent section:

Fig. 16. : The plot of negativity N(p) as a function of X and t emphasizing on the
inseparable region i.e. X>0.88. As time goes, one can see that the
system which is initially entangled becomes separable (disentagled) at

certain times and vis ver sa.
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Fig. 18. : The section of Fig.16 at X =31. Since X= 31> 0.88 is in the inseparable
region, N(p) at t =0 is not equal to zero. However, as time goes,
N(p) oscillates between high degree of entanglement and lower, somes

are zero.
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From many aspects of N(p) as function of X and t above, it is worth to note that
for high temperature T (small X), but not too high, the initial vanishing of negativity
becomes non-vanishing at certain times so, even it has a small value, one may take
advantages of the entanglement at these times for some applications. Moreover, unlike the
X-dependent on N(p) at t=0, N(p) at any time larger than zero does not goes to

zero for large X but goes to some constant values depending on each time t .



Chapter 4

Conclusion and Discussion

In this thesis, we have studied some aspects of the system of two coupled two-level
atoms, where the coupling is a dipole-dipole type of interaction. In particular, we have

obtained the following results:

1. In contact with a heat reservoir at temperature T, we derived the thermal state
and then used it to investigate the entanglement between two atoms. By apply the PPT-
criterion, which is necessary and sufficient for our 2 ®2 system, the thermal state was
shown to be separable for all temperatures high enough such that the certain inequality
holds. In the opposite way, if temperatures are low enough so that this inequality is violated,
our system is then inseparable or entangled. The quantitative study of this behavior was
also studied by computing the negativity, which is the quantity describing a degree of
entanglement. Since in the separable region (region of high T) there is no entanglement,
negativity is then zero while in the inseparable region (region of low T), the negativity is not
zero. In this inseparable region, the negativity goes to its peak (highest degree of
entanglement) when the coupling energy is of the same order as thermal energy and then

reaches zero again as T goes to zero.

2. When our system, which is initially in thermal equilibrium, is applied by a laser
field, the Rabi’'s oscillation appearing in each atom causes some interesting situations as
follows:

a. In the separable region, for fixed T (not too high), the initial vanishing
negativity some times becomes non-vanishing, however, with small degree of entanglement.
For too high T, the negativity is always zero.

b. In the inseparable region, for fixed T, the initial non-vanishing negativity
oscillators irregularly in time. Some times it goes to high degree of entanglement and some
times to zero.

c. For fix time t, if t is very very close to zero, the T — dependent on
negativity is almost the same as one at t =0 (initial thermal state) except at very low T
where negativity reaches some constants which are not equal to zero. For other times t,

T — dependent on negativity is quite different (except at very high T where the negativity is



39

clearly zero) especially at low T i.e. the negativity goes to some constants (depends on
each t) which is “not” zero, as T goes to zero.

It is worth to note that although the system in this thesis is a two coupled two-level
atoms, our study and thus all of the results can be used to explain a behavior of any
system of two coupled qubits if the mathematical form of their interaction is identical to us.
Moreover, since the degree of entanglement varies with time for each temperature T (not
too high), it is an interesting question weather one can take advantages of this behavior for

a realistic application.
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APPENDIX A

Coefficients in the case g =0

For i =1, For i =2,
1+cosRt isnRt
o ()= e -0
c (t)= ISNR t C? (t)= 1+cosRt
2 2
c® )= - SNR ™ () 1-CosRt
2 2
c® 1) {1—cosRotj ce® (t)_lsm Rt
2 2
For i=3, For i =4,
CO ()= isnRt C1(4)(t)=_(1—cosR0t
2 2
1-cosR t ISRt
o (- e -5
C3(3)(t):1+COSR°t c (t):_lstOt
2 2
_1+cosRit

isnRt
c? (t):—TRO ct t)
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APPENDIX B

Relation between coefficients

From eq. (30), we have
Cl(’i’g) (t)= cos% Rt
C2®) (t) = isin%ROt
c(*®)(t)=isin % Rt

C{*®(t)= cos% Rt

Compare these coefficient to those in appendix A, one obtains

c? t)=cMe)ct ()
c{? t)=ce)ct ()
ct? (1) =-cCct? (1)

C¥M)=C{” OC )
CV (H)=C{” OC:™ 1)
GV )=-C;" t)c” 1)
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