

Presented in Partial Fulfillment of the Requirements for the Master of Science Degree in Chemistry at Srinakharinwirot University

Presented in Partial Fulfillment of the Requirements for the Master of Science Degree in Chemistry at Srinakharinwirot University

May 2011
Copyright 2011 by Srinakharinwirot University

Presented in Partial Fulfillment of the Requirements for the Master of Science Degree in Chemistry
at Srinakharinwirot University

Natthakaln Lomchoey. (2011). Cyclopeptide alkaloids from some ziziphus plants. Thesis, M.Sc. (Chemistry). Bangkok: Graduate School, Srinakharinwirot University. Advisor Committee: Assoc. Prof. Dr. Sunit Suksamrarn, Dr. Prasert Pattanaprateeb.

Phytochemical studies have established the genus Ziziphus (Rhamnaceae family) to be a rich source of cyclopeptides. Investigation of selected Thai Ziziphus plants (Z. cambodiana root bark and Z. mauritiana stem bark), led to isolation of two new cyclopeptide alkaloids as 5(14)-scutianine A-type cyclopeptide alkaloid (cambodine) and 5(13)-zizyphine A-type cyclopeptide alkaloid (mauritine M), from Z. cambodiana and Z. mauritiana, respectively. Moreover, three known cyclopeptides, frangufoline and lotusanine B, as 4(14)-membered cyclopeptides were isolated from Z. cambodiana, and nummularine H as 5(13)-cyclopeptide was isolated from Z. mauritiana. Their structures and relative stereochemistry of the new compounds were elucidated mainly on the basis of extensive NMR and mass spectroscopic analysis. The stereochemical assignments were established by their CD spectra analysis 2D NMR experiments and by comparison with other related compounds of known stereochemistry.

ไซโคลเปปไทด์อัลคาลอยด์จากพืช ZIZIPHUS บางชนิด

เสนอต่อบัณฑิตวิทยาลัย มหาวิทยาลัยศรีนครินทรวิโรฒ เพื่อเป็นส่วนหนึ่งของการศึกษา ตามหลักสูตรวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี

ณัฏฐกัลย์ ลมเชย. (2554). ไซโคลเปปไทด์อัลคาลอยด์จากพืช ZIZIPHUS บางชนิด. ปริญญานิพนธ์ วท.ม. (เคมี). กรุงเทพฯ: บัณฑิตวิทยาลัย มหาวิทยาลัยศรีนครินทรวิโรฒ. คณะกรรมการควบคุม: รองศาสตราจารย์ ดร.สุนิตย์ สุขสำราญ, ดร. ประเสริฐ พัฒนาประทีป.

จากการศึกษาองค์ประกอบทางเคมีจากเปลือกรากตะครองและเปลือกต้นพุทรา สามารถ แยกสารไซโคลเปบไทด์อัลคาลอยด์ชนิดใหม่ได้ 2 สาร คือ cambodine จากเปลือกรากตะครอง และ mauritine M จากเปลือกต้นพุทรา นอกจากนี้ยังพบสารประกอบไซโคลเปบไทด์อัลคาลอยด์ที่เคย พบแล้ว 3 สาร ได้แก่ frangufoline และ lotusanine B จากตะครอง และ nummularine H จากพุทรา โครงสร้างของสารทราบได้จากการวิเคราะห์ข้อมูลสเปกโทรสโคปี โดยใช้เทคนิค NMR และ แมสสเปกโทรสโคปีเป็นส่วนใหญ่ สำหรับการหาสเตอริโอเคมีของสารใช้เทคนิค $C D, 2 D$ NMR และ ทำการเปรียบเทียบข้อมูลกับสารประกอบอื่นที่มีโครงสร้างใกล้เคียงกัน

Acknowledgements

The first and foremost, I would like to express my sincere gratitude to my supervisor, Assoc. Prof. Dr. Sunit Suksamrarn, for her kind and helpful supervision, hearty encouragement and research assistantship support throughout this work.

I would like to thank all my committee members, Dr. Prasert Pattanaprateeb my co-advisors, Asst. Prof. Dr. Siritron Samosorn, for their endless kindness, thoughtful advice, valuable time, patient reading and warm encouragement. In addition, I feel grateful to Assoc. Prof. Dr. Thanattkhun Mongkolaussavaratana, Chulabhorn Graduate Institute, for his useful comments and encouragement.

This work was supported by the Center of Excellence for Innovation in Chemistry (PERCH-CIC). I am indebted to Mr. Wicharn Wisetsri and Mr. Jessada Netsawangwicha for collections of the plant materials.

I am grateful to Mr. Pichit Sudta and Mr. Payung Jiarawapi, Department of Chemistry, Faculty of Science, Srinakharinwirot University for recording the nuclear magnetic resonance spectra, Mr. Nitirat Chimnoi, Chulabhorn Research Institute for recording the HRMS, Mr. Samran Prabpai and Assoc. Prof. Dr. Palangpon Kongsaeree, Department of Chemistry, Faculty of Science, Mahidol University for X-ray diffraction data, and to Asst. Prof. Dr. Boon-Ek Yingyongnarongkul, Mr. Widchaya Radchatawedchakoon and Miss Ratchanaporn Chikchaisiri, Department of Chemistry, Faculty of Science, Ramkhamhaeng University for recording the ESIMS and optical rotations.

Many special thanks also go to my teachers, friends, colleagues and staff of the Department of Chemistry, Faculty of Science, Srinakharinwirot University for their friendship, kind support and encouragement.

Finally, I wish to express my profound gratitude to my parents and family for their love, unconditional support and encouragement throughout my hold life.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1
Background 1
Ethnopharmacological uses 1
Objectives of the study 2
2 REVIEW OF LITERATURE 3
Sources of cyclopeptide alkaloids 3
Classification of cyclopeptide alkaloids 3
Nomenclature of cyclopeptide alkaloids 4
Types of cyclopeptide alkaloids 5
Literature reviews of Ziziphus cambodiana Pierre 12
Literature reviews of cyclopeptides from Ziziphus mauritiana Lam. 17
3 EXPERIMENTAL 19
Sources of plant materials 19
General techniques 19
Physical properties 20
Spectroscopy 21
Extraction and isolation procedures 21
Physical and spectral data of the isolated compounds from the root bark of Z. cambodiana 28
Physical and spectral data of the isolated compounds from the stem bark of
Z. mauritiana 29

TABLE OF CONTENTS (continued)

Chapter Page
4 RESULTS AND DISCUSSION 31
Cyclopeptide alkaloids from the MeOH extract of Z. cambodiana root bark 31
Structure determination of compound ZC-M1 (frangufoline, sss4449) 32
Structure determination of compound ZC-M2 (lotusanine B, sss4635) 39
Structure determination of compound ZC-M3 (Cambodine, sss4402) 46
Cyclopeptide alkaloids from the MeOH extract of Z. mauritiana stem bark 51
Structure determination of compound ZM-M1 (Nummularine H, sss4971).. 52
Structure determination of compound ZM-M2 (Mauritine M, sss4973) 57
5 CONCLUSION 64
BIBLIOGRAPHY 65
APPENDIX 70
GLOSSARY 77
CURRICULUM VITAE 83

LIST OF TABLES

Table Page
1 Nomenclature of cyclopeptide alkaloids 5
$2 \quad \mathrm{IC}_{50}$ values for antiplasmodial and MIC values for antimycobacterial activities of triterpenes 1-39 13
$3 \quad \mathrm{IC}_{50}$ values for neuraminidase inhibitory activity of flavonoid glycosides 40-42 14
$4 \mathrm{IC}_{50}$ values $(\mu \mathrm{M})$ of triterpenes $34,36-37,39$ and 43 with GLI1-mediated transcriptional inhibitory activity, and cytotoxicity against PANC1, DU145, and C3H10T1/2 cells 15
$5{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and 2D NMR data of compound ZC-M1 (sss4449) in CDCl_{3} 34
6 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZC-M1 (sss4449) with frangufoline (6) 37
7 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZC-M1 (sss4449) with discarine M (61) 38
$8{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and 2D NMR data of compound ZC-M2 (sss4635) in CDCl_{3} 41
9 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZC-M2 (sss4635) with lotusanine (24) 43
10 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZC-M2 (sss4635) with waltherine A (62) 44
11 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZC-M2 (sss4635) with amaiouine (63) 45
$12{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and 2D NMR data of compound ZC-M3 (sss4402) in CDCl_{3} 49
13 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of cyclic part of compound ZC-M3 with mauritine L (64) 50
$14{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and 2D NMR data of compound ZM-M1 (sss4971) in CDCl_{3} 55

LIST OF TABLES (continued)

Table Page
15 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZM-M1 with nummularine H (59) 56
$16{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and 2D NMR data of compound ZM-M2 (sss4973) in CDCl_{3} 60
17 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZM-M2 with paliurine G (65) 61
18 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZM-M2 with mauritine J (52) 62

LIST OF FIGURES

Figure Page
1 Structures of homocyclopeptide and heterocyclopeptide 3
2 General structure for cyclopeptide alkaloid 4
3 Structures of cyclopeptides 1-3 6
4 Structures of cyclopeptides 4-6 7
5 Structures of cyclopeptides 7-9 7
6 Structures of cyclopeptides 10-12 8
7 Structures of cyclopeptides 13-15 9
8 Structures of cyclopeptides 16-18 9
9 Structures of cyclopeptides 19-21 10
10 Structures of cyclopeptides 22-24 11
11 Structures of cyclopeptides 25-27 11
12 Structures of cyclopeptides 28-30 12
13 Structures of cyclopeptides 31-43 16
14 Structures of cyclopeptides 44-54 17
15 Structures of cyclopeptides 55-57 18
16 Structures of cyclopeptide alkaloids from the root bark of Z. cambodiana 32
17 Selected HMBC, COSY and NOESY correlations for compound ZC-M1 35
18 Structures of frangufoline and discarine M 38
19 Selected HMBC, COSY and NOESY correlations for compound ZC-M2 40
20 Structures of lotusanine B, amaiouine and waltherine A 42
21 Selected HMBC, COSY and NOESY correlations for compound ZC-M3 48
22 Structures of cambodine and mauritine L 48
23 Structures of cyclopeptide alkaloids from stem bark of Z. mauritiana 52
24 Selected HMBC, COSY and NOESY correlations for compound ZM-M1 54
25 Selected HMBC, COSY and NOESY correlations for compound ZM-M2 59
26 Structures of mauritine J, paliurine G and mauritine M 63
27 Cyclopeptide alkaloids from selected Thai Ziziphus plants 64

LIST OF FIGURES (continued)

Figure Page
$28{ }^{1} \mathrm{H}$ NMR of compound ZC-M1 (frangufoline (6), sss4449) in CDCl_{3} 71
$29{ }^{13} \mathrm{C}$ NMR of compound ZC-M1 (frangufoline (6), sss4449) in CDCl_{3} 72
$30{ }^{1} \mathrm{H}$ NMR of compound ZC-M2 (lotusanine B (24), sss4635) in CDCl_{3} 73
$31{ }^{13} \mathrm{C}$ NMR of compound ZC-M2 (lotusanine $\mathrm{B}(24)$, sss4635) in CDCl_{3} 74
$32{ }^{1} \mathrm{H}$ NMR of compound ZC-M3 (cambodine (58), sss4402) in CDCl_{3} 75
$33{ }^{13} \mathrm{C}$ NMR of compound ZC-M3 (cambodine (58), sss4402) in CDCl_{3} 76

LIST OF SCHEMES

Scheme Page
1 Extraction procedure of the root bark of Z. cambodiana 22
2 Isolation of compounds from the EtOAc extract II of Z. cambodiana root bark 24
3 Extraction procedure of the stem bark of Z. mauritiana 25
4 Isolation of compounds from the MeOH extract of Z. mauritiana stem bark 27

CHAPTER 1

INTRODUCTION

Background

The genus Ziziphus belongs to the family Rhamnaceae (Smitinand. 2001: 564565), a family of 58 genera and 900 species worldwide (Bhattacharyya; \& Johri. 1998: 326328), particular in arid regions (Gardner; Sidisunthorn; \& Anusarnsunthorn. 2000: 130) with 100 species distributed in the tropical America, Africa, the Mediteranean region, IndoMalaysia, and Australia, and also the tropical parts of India, Nepal, Pakistan, Bangla Desh and Sri Lanka (Bhattacharyya; \& Johri. 1998: 326-328). Only nine species of Ziziphus plants are found in Thailand (Smitinand. 2001: 564-565) as follows:

1. Z. angustifolia (Miq.) Hatus Ex Steenis, known in Thai as Phutsa bai liam (พุทราใบเหลี่ยม).
2. Z. attopoensis Pierre, known in Thai as Kamlang suea khrong (กำลังเสือโคร่ง).
3. Z. brunoniana Clarke ex Brand. or Z. oenoplia Mill. var. brunoniana Tardieu, known in Thai as Nam lep maeo (หนามเล็บแมว).
Z. oenoplia Mill. var. oenoplia, known in Thai as Nam lep yiao (หนามเล็บเหยี่ยว).
4. Z. calophylla Wall., known in Thai as Chin chi (ชินชี่).
5. Z. cambodiana Pierre, known in Thai as Takhrong (ตะครอง).
6. Z. incurva Roxb., known in Thai as Ta-chu-mae (ตาจู่แม).
7. Z. jujuba Mill., known in Thai as Phutsa chin (พุทราจีน).
8. Z. mauritiana Lam. or Z. jujube Lam., known in Thai as Phutsa (พุทรา).
9. Z. rugosa Lam., known in Thai as Ma khwat (มะควัด).

Ethnopharmacological uses

The Rhamnaceous Ziziphus species are medicinal plants in several countries. The seeds of Z. vulgaris var. spinosus is reputed to be the most important herbal drug for the treatment of insomnia as sedatives and nerve tonics in Chinese medicine (Huh. 1981: 216) and antiarrythmias in folk medicine (Cho; Ro; \& Hong. 1976). In Thailand the root bark of Z. oenoplia have been used for treatment of ulcers (Bunyapraphatsara; \& Chokechaijaroenporn. 2000: 291-292). The Z. mauritiana is used in Thai traditional
medicine; bark and leaf are used for treatment of diarrhea, vomiting and ulcers, fruit is used for treatment of diarrhea and fever (Bunyapraphatsara; \& Chokechaijaroenporn. 2000: 328329). In the Indian system of medicine, Z. rugosa is used for treatment of diarrhea, menorrhagia and infection of teeth (Acharya; et al. 1988: 200-202). In Thailand the stem of Z. cambodiana is used traditionally for its antiinfectious abilities (Suksamrarn; et al. 2006: 533-537). Moreover, it is commonly used in Cambodian traditional medicine for treatment of fever (Hout; et al. 2006: 12-18).

From the reports on the interesting biological activities of Ziziphus plants, it is of interest to study on the chemical constituents of Ziziphus plants. Phytochemical studies have established the genus Ziziphus to be a rich sources of cyclopeptides (Tschesche; \& Kaussmann. 1975: 165-205, Hesham; et al. 2007: 143-165, Tan; \& Zhou, 2006: 840), lupane and ceanothane triterpenes (Suksamrarn; et al. 2006: 535-537). Thus, some Thai Ziziphus plants (Z. cambodiana and Z. mauritiana) are selected for this study to search for cyclopeptide alkaloids.

Objectives of the Study

1. To isolate and purify cyclopeptide alkaloids from some Ziziphus plants.
2. To elucidate the chemical structures of the isolated cyclopeptide alkaloids.

CHAPTER 2

REVIEW OF LITERATURE

Sources of cyclopeptide alkaloids

Cyclopeptide alkaloids are widely distributed among plants of Rhamnaceae family, but their occurrence has also been confirmed in representatives of Asteraceae, Celastraceae, Euphobiaceae, Menispermaceae, Pandaceae, Rubiaceae, Sterculiaceae and Urticaceae. These compounds are found in leaves, stem bark, root bark and seed. They often occur in minute amounts and as complex mixtures. The total yield from dried plant material is about 0.01-1 \% (Gournelis; Laskaris; \& Verpoorte. 1998: 2).

Classification of cyclopeptide alkaloids

On the basis of their structural skeletons and distributions in plants, the systematic structural classification of plant cyclopeptides which are divided into two classes according to the skeletons, whether formed with amino acid peptide bonds or not (Tan; \& Zhou. 2006: 842).

1. Homocyclopeptides, formed with amino acid peptide bonds.
2. Heterocyclopeptides, formed with amino acid peptide bonds and other compound such as styrylamine moiety.

Homocydopeptide

Heterocyclopeptide

FIGURE 1 Structures of homocyclopeptide and heterocyclopeptide

Nomenclature of cyclopeptide alkaloids

The heterocyclopeptide is defined as basic compound embodying a p - or m-ansa structure, in which a 10- or 12-membered peptide type bridge spans the 1,3 or 1,4 positions of benzene ring. The 13 - and 14 -membered rings consist in a 10 -membered bridge spans, involve p - and m-ansa, respectively. Whereas, the 15 -membered compound embodying a m-ansa structure, with a 12 -membered type bridge spans.

The 13-, 14- or 15 -membered ring cyclopeptide alkaloids are classified according to the number of 4 (having A, B, C and D) or 5 (with A, B, C, D and E) units in the structural features (FIGURE 2). Consequently the cyclopeptide alkaloids are subdivided into groups with the following annotations: 4(13)-, 5(13)-, 4(14)-, 5(14)-, and 5(15)-. The 4(14)and 5(14)-compounds are further subdivided according to the nature of the β-OH-amino acid (unit B). The nomenclature is shown in TABLE 1 (Gournelis; Laskaris; \& Verpoorte. 1998: 5).

FIGURE 2 General structures for cyclopeptide alkaloid

TABLE 1 Nomenclature of cyclopeptide alkaloids

Number	13 atoms	14 atoms			15 atoms
4 units	4(13)-compounds	4(14)-compounds			4(15)-compounds
	Nummularine C-type (Pro)	Frangulaninetype (Leu)	Integerrine- type (Phe)	Amphibine Ftype (Pro)	Mucronine A-type
5 units	5(13)-compounds	5(14)-compounds			-
	Zizyphine A-type (Pro)	Scutianine (Leu or		Amphibine B-type	

The name of the type of cyclopeptide alkaloids according to the first compound has been found for each type. The structures for cyclopeptide alkaloids are described as follows:

Types of cyclopeptide alkaloids

1. 4(13)-Nummularine C-type cyclopeptide alkaloids

The 4(13)-Nummularine C-type cyclopeptide alkaloids are composed of 4 units including 3 units of amino acid (A, B and C) and unit D is a styrylamine moiety, the B unit is β-OH-proline, for examples:
1.1 Nummularine C (1) was isolated from the MeOH extract of the root bark of Z. nummularia (Tschesche; Elgamal; \& Eckhardt. 1977: 2649-2655).
1.2 Daecucyclopeptide I (2) (Han, B. H.; Park; \& Han, Y.N. 1989: 443-448) or Daechuine S26 (Han B. H.; Park; \& Han Y.N. 1989: 443-448) was isolated from the root bark and fruit of Z. jujuba var. inermis (Han, B. H.; Park; \& Han, Y.N. 1989: 443-448).
1.3 Sativanine E (3) was isolated from the MeOH extract of the stem bark of Z. sativa (Shah; et al. 1985: 555-558).

FIGURE 3 Structures of cyclopeptides 1-3

2. 4(14)-Frangulanine-type cyclopeptide alkaloids

The 4(14)-Frangulanine-type cyclopeptide alkaloids are composed of 4 units including 3 units of amino acid $(A, B$ and C) and unit D is a styrylamine moiety, the B unit is β-OH-leucine, for examples:
2.1 Frangulanine (4) (Mascaretti; et al. 1972: 1133) or ceanothamine A (Servis; et al. 1969: 5619-5624.) or Daechuine S2 (Han, B. H.; Park; \& Han, Y.N. 1989: 443-448) was isolated from, such as the MeOH extract of the stem bark of Z. jujuba var. inermis (Han, B. H.; Park; \& Han, Y.N. 1989: 443-448).
2.2 Ceanothine $B(5)$ was isolated from, such as the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the root bark of Ceanothus sanguineus (family Rhamnaceae) (Lagarias; Goff; \& Rapoport. 1979: 663-668).
2.3 Frangufoline (6) (Zarga; et al. 1995: 504-511) or daechuine S1 (Han, B. H.; Park; \& Han, Y.N. 1989: 443-448) or Sanjoinine A (Han, B. H.; Park; \& Han, Y.N. 1990: 3315-3319) was isolated from, such as the hexane extract of the seeds of Z. vulgularis var. spinosus (Han, B. H.; Park; \& Han, Y.N. 1990: 3315-3319).

Frangulanine (4)
or Ceanothamine A or Daechuine S2)

Ceanothine $B(5)$

Frangufoline (6)
(or Sanjoinine A or Daechuine S1)

FIGURE 4 Structures of cyclopeptides 4-6

3. 4(14)-Integerrine-type cyclopeptide alkaloids

The 4(14)-Integerrine-type cyclopeptide alkaloids are composed of 4 units including 3 units of amino acid (A, B and C) and unit D is a styrylamine moiety, the B unit is β-OH-phenylalanine, for examples:
3.1 Integerrine (7) was isolated from, such as the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the root of Ceanothus integerrimus (Lagarias; et al. 1979: 220-227).
3.2 Sativanine B (8) was isolated from the stem bark of Z. sativa (Tschesche; Shah; \& Eckhardt; 1979: 702-709).
3.3 Nummularine $G(9)$ was isolated from the MeOH extract of the stem bark of Z. nummularia (Tschesche; Elgamal; \& Eckhardt. 1977: 2649-2655).

Integerrine (7)

Sativanine B(8)

Nummularine G(9)

FIGURE 5 Structures of cyclopeptides 7-9

4. 4(14)-Amphibine F-type cyclopeptide alkaloids

The 4(14)-Amphibine F-type cyclopeptide alkaloids are composed of 4 units including 3 units of amino acid $(A, B$ and C) and unit D is a styrylamine moiety, the B unit is β-OH-proline, for examples:
4.1 Amphibine F (10) was isolated from, such as the MeOH extract of the stem of Z. spinachristi (Tschesche; et al. 1974: 1633).
4.2 Spinanine $A(11)$ was isolated from the stem bark of Z. spinachristi (AbdelGalil; \& El-Jessry. 1991: 1348-1349).
4.3 Lotusine A (12) was isolated from the root bark of Z. lotus (Ghedira; et al. 1993: 1591-1594).

Amphibine F (10)

Spinanine A (11)

Lotusine A (12)

FIGURE 6 Structures of cyclopeptides 10-12

5. 4(15)-Mucronine A-type cyclopeptide alkaloids

The 4(15)-Mucronine A-type cyclopeptide alkaloids are composed of 4 units including 3 units of amino acid $(A, B$, and C) and unit D is a styrylamine moiety, the unit B is amino acid without $\beta-\mathrm{OH}$, for examples:
5.1 Mucronine A (13) was isolated from, such as the stem bark of Z. mucronata (Fehlhaber; et al. 1972: 195).
5.2 Mucronine G (14) was isolated from the stem bark of Z. mucronata (Tschesche; et al. 1974: 1915).
5.3 Ziziphine D (15) was isolated from the stem bark of Z. oenoplia (Cassels; et al. 1974: 2461-2466).

Mucronine A (13)

Mucronine G (14)

Zizyphine D (15)

FIGURE 7 Structures of cyclopeptides 13-15

6. 5(13)-Zizyphine A-type cyclopeptide alkaloids

The 5(13)-Zizyphine A (6)-type cyclopeptide alkaloids are composed of 5 units including 4 units of amino acid (A, B, C and E) and unit D is a styrylamine moiety, the unit B is β-OH-proline, for examples:
6.1 Zizyphine A (16) was isolated from the stem bark of Z. oenoplia (Tschesche; Kaussmann; \& Eckhardt. 1973: 2577-2580).
6.2 Sativanine $\mathrm{D}(17)$ was isolated from the MeOH extract of the stem bark of Z. sativa (Shah; et al. 1985: 2765-2767).
6.3 Lotusine E (18) was isolated from the root bark of Z. Iotus (Ghedira; et al. 1995: 767-772).

Zizyphine A (16)

Sativanine D (17)

Lotusine E (18)

FIGURE 8 Structures of cyclopeptides 16-18

7. 5(14)-Scutianine A-type cyclopeptide alkaloids

The 5(14)-Scutianine A-type cyclopeptide alkaloids are composed of 5 units including 4 units of amino acid (A, B, C and E) and intermediary (unit E) is proline and unit D is a styrylamine moiety, the B unit is β-OH-leucine or β - OH -phenylalanine, for examples:
7.1 Scutianine $A(19)$ and scutianine $F(20)$ or N-desmethylscutianine A, were isolated from the stem bark of Scutia boxifolia (family Rhamnaceae) (Tschesche; Welters; \& Fehlhaber. 1967: 323-334).
7.2 Feretine (21) or N-desmethyladouetine Z was isolated from the leaves of Feretia apodanthera (family Rubiaceae) (Bailleul; et al. 1974: 949).

Scutianine A (19)

Scutianine F (20)
(or N -Desmethylscutianine A)

Feretine (21) (or N -Desmethyladouetine Z)

FIGURE 9 Structures of cyclopeptides 19-21

8. 5(14)-Amphibine B-type cyclopeptide alkaloids

The 5(14)-Amphibine B-type cyclopeptide alkaloids are composed of 5 units including 4 units of amino acid $(A, B, C$ and $E)$ and unit D is a styrylamine moiety, the B unit is β-OH-proline, for examples:
8.1 Amphibine $B(22)$ and amphibine E (23), were isolated from, such as the stem bark of Z. amphibia (Tschesche; Kaussmann; \& Fehlhaber. 1972: 3094).
8.2 Lotusine B(24) was isolated from the root bark of Z. lotus (Ghedira; et al. 1995: 767-772).

Amphibine B(22)

Amphibine E (23)

Lotusine B (24)

FIGURE 10 Structures of cyclopeptides 22-24

9. 4(14)-Pandamine-type cyclopeptide alkaloids

The 4(14)-Pandamine-type cyclopeptide alkaloids are composed of 4 units including 3 units of amino acid $(A, B$ and $C)$, and unit D is a 2-alkoxy-2-(phydroxyphenyl)ethylamine, instead of styrylamine moiety, the B unit is β-OH-leucine, for examples:
9.1 Pandamine (25) was isolated from the root bark of Panda oleosal (family Pandaceae) (Pais; et al. 1964: 817).
9.3 Discarine H (26) was isolated from the root bark of Discaria febrifuga (family Rhamnaceae) (Herzog; et al. 1984: 406).
9.3 Discarine K (27) was isolated from the root of Discaria febrifuga (Voelter; et al. 1987: 467).

Pandamine (25)

Discarine H (26)

Discarine $\mathrm{K}(27)$

FIGURE 11 Structures of cyclopeptides 25-27

10. Neutral compound related to 14-membered cyclopeptide alkaloids

The neutral compound related to 14-membered cyclopeptide alkaloids are composed of 4 units including 2 units of amino acid (B and C) and a coumaroyl as terminal chain (A), instead of amino acid, unit D is a styrylamine moiety, for examples:
10.1 Sanjoinenine (28) was isolated from, such as the MeOH extract of the seeds of Z. vulgaris var. spinosus (Han, B. H.; Park; \& Han, Y.N. 1990: 3315-3319).
10.2 Scutianine C (29) was isolated from, such the root of Scutia buxifolia (family Rhamnaceae) (Gonzalez; et al. 1974: 2865-2869).
10.3 Lotusanine $B(30)$ was isolated from the $C_{6} \mathrm{H}_{6}$ extract of the whole plant of (except the roots) of z. lotus (Zarga; et al. 1995: 504-511).

Sanjoinenine (28)

Scutianene C (29)

Lotusanine B(30)

FIGURE 12 Structures of cyclopeptides 28-30

Literature reviews of Ziziphus cambodiana Pierre

In 2006, our group reported one new triterpene ester, 3-O-Vanillylceanothic acid (31) together with five known lupane constituents, lupeol (32), betulinaldehyde (33), betulinic acid (34), 2-O-trans-p-coumaroyl alphitolic acid (35) and alphitolic acid (36), and three ceanothane triterpenes, zizyberanalic acid (37), zizyberenalic acid (38) and ceanothic acid (39) (FIGURE 13) from EtOAc extract, as the antiplasmodial and antituberculosis constituents of the root bark of this plant species (TABLE 2). This was the first report of in vitro antiplasmodial and antimycobacterial activities from the ceanothane-type triterpenes (Suksamrarn; et al. 2006: 535-537).

TABLE $2 \quad \mathrm{IC}_{50}$ values for antiplasmodial and MIC values for antimycobacterial activities of triterpenes 31-39

Compounds	$\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL})$	MIC $(\mu \mathrm{g} / \mathrm{mL})$
3-O-Vanillylceanothic acid (31)	3.7	25
Lupeol (32)	Inactive $^{\mathrm{a}}$	Inactive $^{\mathrm{b}}$
Betulinaldehyde (33)	6.5	25
Betulinic acid (34)	Inactive $^{\mathrm{a}}$	25
2-O-E-p-Coumaroylalphitolic (35)	0.9	12.5
Alphitolic acid (36)	Inactive $^{\mathrm{a}}$	50
Zizyberanalic acid (37)	Inactive $^{\mathrm{a}}$	50
Zizyberenalic acid (38)	3.0	100
Ceanothic acid (39)	Inactive $^{\mathrm{a}}$	Inactive ${ }^{\mathrm{b}}$

a $=$ Inactive at $10 \mu \mathrm{~g} / \mathrm{mL}, \quad$ b $=$ Inactive at $>200 \mu \mathrm{~g} / \mathrm{mL}$

In addition, Hout; et al. reported on antiplasmodial investigation for 28 species of Cambodian plants used by traditional healers. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}$ and MeOH extracts were tested for in vitro activity against a chloroquine resistant Plasmodium falciparum strain (W2). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract obtained from the stem of Z . cambodiana showed IC_{50} values of 19.0 $\mu \mathrm{g} / \mathrm{mL}$, the MeOH and aqueous extract also showed the same IC_{50} values of $>50 \mu \mathrm{~g} / \mathrm{mL}$. Moreover, all extract of Z. cambodiana stem showed in vitro antiproliferative activity, which assessed on human monocytic THP1 cells, with the same IC_{50} values of > $50 \mu \mathrm{~g} / \mathrm{mL}$ (Hout; et al. 2006: 12-18).

In 2007, Li; et al. studied on neuraminidase inhibitory activity of the leaf- and branch extracts of Z. cambodiana. The leaf extract, which showed stronger activity (96% inhibition at $50 \mu \mathrm{~g} / \mathrm{mL}$) compared to the branch extract (46% inhibition at $50 \mu \mathrm{~g} / \mathrm{mL}$), led to isolation of flavonoid glycosides, quercitrin (40) (FIGURE 13), isoquercitrin or quercitrin 3-O-β-D-glucoside (41) and quercitrin 3-O-D-arabinosyl-($1 \rightarrow 2$)- α-L-rhamnoside (42). All compounds were tested for neuraminidase inhibitory activity and resulted was shown in TABLE 3 (Li; et al. 2007: 1195-1196).

TABLE $3 \quad \mathrm{IC}_{50}$ values for neuraminidase inhibitory activity of flavonoid glycosides 40-42

Compounds	$\mathrm{IC}_{50}(\mu \mathrm{M})$
quercitrin (40)	7.89 ± 0.96
isoquercitrin (41)	9.87 ± 0.68
quercitrin 3-O-D-arabinosyl-(1 $\rightarrow 2$)- α-L-rhamnoside (42)	4.82 ± 1.06
Neu5Ac2en	44.47 ± 0.87
(5-acetamido-2,6-anhydro-3,5-dideoxy-D-glycero-D-galacto-non-2-enonic acid)	

In 2008, Arai; et al. reported that the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of Z. cambodiana stem inhibited $\mathrm{Hh} / \mathrm{GLI}$ signaling pathway, which led to the isolation of three pentacyclic triterpenes, betulinic acid (34), alphitolic acid (36) and colubrinic acid or zizyberanalic acid (37), as potent $\mathrm{Hh} / \mathrm{GLI}$ signaling inhibitors. These compounds showed an important relationship among $\mathrm{Hh} / \mathrm{GLI}$ signaling inhibition, the decreased expression of the antiapoptosis protein BCL2, and cytotoxicity against cancer cells. These compounds might become good tools and/or leads to new agents in the investigation of $\mathrm{Hh} / \mathrm{GLI}$ signaling pathway inhibitors (Arai; et al. 2008: 9420-9424).

Moreover, Arai; et al. also examined the cytotoxicity of these active compounds against PANC1, human prostate cancer cells (DU145) and mouse embryo fibroblast cells (C3H10T1/2) (TABLE 4). The cytotoxicity against cancer cells (PANC1 and DU145) by betulinic acid (34) or colubrinic acid (37) would be caused by inhibition of the expression of the anti-apoptosis protein BCL2. These pentacyclic triterpene inhibitors showed an important relationship between $\mathrm{Hh} / \mathrm{GLI}$ signaling inhibition, the decrease of BCL2, and cytotoxicity against cancer cells and resulted was shown in TABLE 4 (Arai; et al. 2008: 9420-9424).

TABLE $4 \mathrm{IC}_{50}$ values $(\mu \mathrm{M})$ of triterpenes $34,36-37,39$ and 43 with GLI1-mediated transcriptional inhibitory activity, and cytotoxicity against PANC1, DU145, and C3H10T1/2 cells

Compounds	GLI1 transcriptional inhibition ($\mathrm{IC}_{50}: \mu \mathrm{M}$)	Cytotoxicity ($\left.\mathrm{IC}_{50}: \mu \mathrm{M}\right)$		
		PANC1 ${ }^{\text {a }}$	DU145 ${ }^{\text {b }}$	C3H10T1/2 ${ }^{\text {c }}$
Betulinic acid (34)	32	44	37	82
Alphitolic acid (36)	42	41	70	145
Colubrinic acid or				
zizyberanalic acid (37)	38	43	78	167
Ceanothic acid (39)	>200	195	>200	>200
Ceanothanolic acid (43)	133	>200	>200	>200

$\mathrm{a}=\mathrm{HaCaT}$ cells with exogenous GLI1, or human pancreatic cancer cells
b = human prostate cancer cells
$c=$ mouse embryo fibroblast cells

$R^{1} \quad R^{2} \quad R^{3}$

Colubrinic acid or : $\beta-\mathrm{CHO} \quad \alpha-\mathrm{OH}$ zizyberanalic acid (37)

Ceanothic acid (39) : $\alpha-\mathrm{COOH} \quad \beta-\mathrm{OH}$
Ceanothanolic acid (43) : $\quad \beta-\mathrm{CH}_{2} \mathrm{OH} \quad \alpha-\mathrm{OH}$

Quercitrin (40) : $\mathrm{R}=\mathrm{Rha}$
Isoquercitrin or quercitrin 3-O- β-D-glucoside (41): R = Glc
Quercitrin 3-O-D-arabinosyl-(1-2)- α-L-rhamnoside (42): Ara-(1-2)-Rha

Rha:

$\mathrm{Glc}:$

Ara-(1-2)-Rha:

FIGURE 13 Structures of compounds 31-43

Literature reviews of cyclopeptides from Ziziphus mauritiana Lam.

Previous phytochemical studies of Z. mauritiana revealed the 14 -membered ring cyclopeptides to be the largest subgroup of alkaloid obtained, whereas only one 13-membered macrocyclic alkaloid isolated from this plant (Gournelis; et al. 1998: 1-179). These included mauritine $A(44)$, mauritine $B(45)$, mauritine $C(46)$, mauritine $D(47)$, mauritine E (48), mauritine $F(49)$ amphibine $B(22)$, amphibine $D(50)$, amphibine $F(10)$ and frangufoline (6) (Tschesche; Wilhelm; Fehlhaber. 1972: 2609-2612, Tschesche; et. al. 1974; 10: 1694-1701), mauritine H (51) (Tschesche; et. al. 1977: 1025-1028), were isolated from bark. Mauritine C (46), mauritine $D(47)$, mauritine $E(48)$ and mauritine $F(49)$ belong to the same structural type with a 14 -membered ring system configuration trans-3-OHproline, 4-OH-styrylamine and one α-amino acid (Tschesche ; et. al. 1974: 1694-1701). Amphibine E (23), mauritine J (52) (Jossang; Zahir; \& Diakite. 1996: 565-567), mauritine K (53) and 13-membered macrocyclic alkaloid sativanine K (54) were isolated from the root bark. It had shown that mauritine $\mathrm{K}(53)$ exhibited significant antifungal activity (Singh; et. al. 2007: 781-784).

	R^{1}	R^{2}	R^{3}	R^{4}
Mauritine A (44)	D	C	Me	NMe_{2}
Mauritine B (45)	D	C	A	NMe_{2}
Mauritine D (47)	A	B	A	NMe_{2}
Mauritine E (48)	E	C	Me	NMe_{2}
Mauritine F (49)	D	C	Me	NHMe
Amphibine D (50)	A	A	D	NMe_{2}
Mauritine H (51)	D	B	Me	NMe_{2}
Mauritine J (52)	D	F	B	NHMe
Mauritine K (53)	A	A	A	NMe_{2}

A:

c:

FIGURE 14 Structures of cyclopeptides 44-54

Our previous investigation of Thai Z. mauritiana root bark resulted in the isolation of three known lupane-type triterpenes, [lupeol (32), betulinic acid (34) and betulin (55)] and four known ceanothane-type [zizyberenalic acid (38), ceanothic acid (39), epiceanothic acid (56) and 24-hydroxyceanothic acid (57)] compounds from EtOAc extract (Panseeta. 2010: 51).

FIGURE 15 Structures of triterpenes 55-57

CHAPTER 3

EXPERIMENTAL

Sources of plant materials

The air-dried root bark of Z. cambodiana was collected from Chamni District, Buriram Province, Thailand, in March, 2007. A voucher specimen (Wicharn Wisetsri 001) was identified by James F. Maxwell and has been deposited at the CMU Herbarium, Faculty of Science, Chiang Mai University, Thailand.

The air-dried stem bark of Z. mauritiana was collected from Samchuk District, Suphanburi Province, Thailand, in June 2005 and a herbarium sample (Jessada Netsawangwicha 002) was identified by Nopporn Damrongsiri and has been deposited at the Faculty of Science, Ramkhamhaeng University, Thailand.

General techniques

1. Thin-layer chromatography (TLC)
1.1 Technique: One dimension, ascending
1.1.1 Adsorbent: Silica gel $60 \mathrm{~F}_{254}$ precoated on aluminium plate (Merck 1.05554)
1.1.2 Layer Thickness: 1.25 mm
1.1.3 Plate size: $1 \times 5 \mathrm{~cm}$ and $2 \times 5 \mathrm{~cm}$
1.2 Detection:
1.2.1 Spots on TLC were visualized under ultraviolet light at wavelengths of 254 and 365 nm .
1.2.1 Developing agent: Anisaldehyde-sulphuric reagent (2.5\% (v/v) in absoluted ethanol containing $3.4 \%(\mathrm{v} / \mathrm{v})$ sulphuric acid and $1.0 \%(\mathrm{v} / \mathrm{v})$ glacial acetic acid). After heating of TLC plate at $100-110{ }^{\circ} \mathrm{C}$ for $1-2$ minutes, the spots of organic compounds will give specific colors with this reagent.
2. Column chromatography (CC)
2.1 Absorbent:
2.1.1 Silica gel 60 particle size $<0.063 \mathrm{~mm}$ (Merck 1.07729)
2.1.2 Silica gel 60 particle size $0.040-0.063 \mathrm{~mm}$ (Merck 1.09385)
2.1.3 Silica gel 60 particle size $0.063-0.200 \mathrm{~mm}$ (Merck 1.07734)
2.2 Packing method: Slurry and dry packing method for particle size <0.063 mm and $0.040-0.063 \mathrm{~mm}$, respectively.
2.3 Sample loading: The sample was dissolved in a small volume of suitable organic solvent. The solution was mixed with silica gel particle size $0.063-0.200 \mathrm{~mm}$ or $0.040-0.063 \mathrm{~mm}$, depending on the type of silica gel in column. The sample was evaporated under reduced pressure and added onto the top of column.
2.4 Elution: After loading of sample onto the column and appropriate solvent system will be used as a mobile phase in the isocratic or gradient systems.
3. Quick Column chromatography (QCC)
3.1 Absorbent: Silica gel $60 \quad \mathrm{GF}_{254}$ for thin-layer chromatography (Merk 1.07730).
3.2 Packing method: Dry vacuum packing method.
3.3 Sample loading: The sample was dissolved in a small volume of suitable organic solvent. The solution was mixed with silica gel $60 \mathrm{GF}_{254}$. The sample was evaporated under reduced pressure and added onto the top of column.
3.4 Elution: After loading of sample onto the column, and appropriate solvent systems were used as a mobile phase in the gradient systems.
4. Size-exclusion gel column chromatography
4.1 Absorbent: Sephadex LH-20
4.2 Packing method: Slurry packing method.
4.3 Sample loading: The sample was dissolved in a small volume of MeOH and added onto the top of column.
4.4 Elution: The column was eluted with MeOH .

Physical properties

1. Optical rotations: Optical rotations was recorded in MeOH or CHCl_{3} on a JASCO-1020 digital polarimeter
2. Melting points: Melting points was measured on Griffin melting point apparatus in degree Celsius of temperature.

Spectroscopy

1. Infrared (IR) absorption spectra

IR spectra was measured on Perkin Elmer FT-IR spectrum BX spectrometer by using potassium bromide (KBr) disc or film.
2. Ultraviolet (UV) absorption spectra

UV spectra were obtained on a Shimadzu UV-2401PC UV-VIS Recording Spectrophotometer.
3. Mass spectra:
3.1 Electrospray ionization (ESI) mass spectra were measured on Finnigan LC-Q mass spectrometer.
3.2 Electrospray ionization-time-of-flight (ESI-TOF-MS) mass spectra (Bruker Daltonics GmbH, Bremen, Germany) was measured on micrOTOF-Q II, an orthogonal acceleration quadrupole time-of-flight (Q-TOF) mass spectrometer equipped with electrospray interface.
4. Nuclear Magnetic Resonance (NMR) spectra
${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were determined on a Bruker Avance 300 FT-NMR spectrometer.

Extraction and isolation procedures

1. Z. cambodiana
1.1 Extraction of the dried root bark of Z. cambodiana.

The air-dried root bark of Z. cambodiana (10 kg) was extracted with EtOAc (3×20
L) at $50{ }^{\circ} \mathrm{C}$ for each 48 hours and then with $\mathrm{MeOH}(3 \times 20 \mathrm{~L})$ at $50{ }^{\circ} \mathrm{C}$ for each 48 hours. Each extract was evaporated under reduced pressure at $50{ }^{\circ} \mathrm{C}$ to afford $\mathrm{EtOAc} I$ and MeOH extracts for 144 g and 1.5 kg , respectively. A portion of the MeOH extract (224.9 g) was dissolved in $1 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}(100 \mathrm{~mL})$ then extracted with EtOAc ($4 \times 400 \mathrm{~mL}$). The EtOAc layers were combined then evaporated under reduced pressure at $50{ }^{\circ} \mathrm{C}$ to provide EtOAc extract II 12.7 g . The extraction procedure is shown in SCHEME 1.

SCHEME 1 Extraction procedure of the root bark of Z. cambodiana

1.2 Isolation of compounds from the EtOAc extract II of Z. cambodiana root bark.

The EtOAc extract II (12.7 g) was subjected to CC, eluting with CC, eluted with a gradient of $\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{MeOH}-\mathrm{EtOAc}$. The fractions were examined by TLC and combined. The isolation procedure is shown in SCHEME 3.

1.2.1 Isolation of compound ZC-M1 (frangufoline, sss 4449)

Fraction $2(1.2 \mathrm{~g})$ was chromatographed on a silica gel column (finer than $0.063 \mathrm{~mm}, 16 \mathrm{~g}$) eluted with gradient of EtOAc- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1% increment of EtOAc, each 100 mL). Eighty-nine fractions (10 mL per fraction) were collected and combined the fraction according to their TLC behavior to yield seventeen subfractions. Subfraction 2.13 was further chromatographed to give compound ZC-M1 (frangufoline) as colorless needles (16.3 mg) from subfraction 2.13.7.

1.2.1 Isolation of compound ZC-M2 (lotusanine, sss4635)

Subgroup 2.13.8 was subjected to size-exclusion column chromatography over sephadex LH-20 eluted with MeOH to yield compound ZC-M2 (lotusanine B) as a colorless amorphous solid (50.1 mg).

1.2.3 Isolation of compound ZC-M3 (cambodine, sss4402)

Fraction $3(3.0 \mathrm{~g})$ was rechromatographed over silica gel (finer than 0.063 $\mathrm{mm}, 60 \mathrm{~g}$) with n-hexane-EtOAc as eluting solvent to give ten subfractions. Subfraction 3.9 was further chromatographed (eluted with gradient of $\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) followed by sizeexcluded over sephadex LH-20 (eluted with MeOH) to yield compound ZC-M3 (cambodine) as colorless needles (17.2 mg).

SCHEME 2 Isolation of compounds from the EtOAc extract II of Z. cambodiana root bark.

2. Z. mauritiana

2.1 Extraction of the dried stem bark of Z. mauritiana

The air-dried stem bark of Z. mauritiana (2.0 kg) was extracted with EtOAc (3 x 8 L) at room temperature for a week and then with $\mathrm{MeOH}(3 \times 8 \mathrm{~L})$ at room temperature for a week. Each extract was evaporated under reduced pressure at $50{ }^{\circ} \mathrm{C}$ to yield EtOAc and MeOH extracts for 35.0 g and 173.3 g , respectively. The isolation procedure is shown in SCHEME 3.

2.2 Isolation of compounds from the MeOH extract

The MeOH extract $(85.3 \mathrm{~g})$ was fractionated by QCC techniques, eluting with hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, EtOAc, MeOH and $\mathrm{H}_{2} \mathrm{O}$ with increasing amounts of the more polar solvent (started at $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexaneup to $50 \% \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}$). The all fractions were examined by TLC and combined.

Air-dried stem bark of Z. mauritiana (2.0 kg)

Extraction with EtOAc at room temperature for a week (3 times)

SCHEME 3 Extraction procedure of the stem bark of Z. mauritiana

Isolation of compound ZM-M1 (nummularine H, sss4971) and compound

 ZM-M2 (mauritine M, sss4973)Fraction 3 (14.6 g) was partly dissolved by using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ soluble residue followed by evaporated under reduced pressure at $50{ }^{\circ} \mathrm{C}$ afford reddish-brown sticky solid $(2.6 \mathrm{~g})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ residue was subjected to column chromatography on silica gel by using gradient of hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, EtOAc and $\mathrm{MeOH}-$ EtOAc and fourteen subfractions were obtained. Subfraction 3.11 was further several chromatographed and size excluded sephadex LH-20 (eluted with MeOH) to yield a colorless amorphous solid of compound ZM-M1 (28.9 mg , sss4971) and compound ZM-M2 (46.2 mg , sss 4973). Compound ZM-M1 and compound ZM-M2 were elucidated as nummularine H and mauritine M, respectively.

MeOH extract (ZM(SB)-M) (50.1 g)

QCC, eluted with a gradient of hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{EtOAc}, \mathrm{MeOH}$ and $\mathrm{H}_{2} \mathrm{O}$ (started at $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexaneup to $50 \% \mathrm{H}_{2} \mathrm{O}: \mathrm{MeOH}$)

Partition with $\mathrm{CH}_{2} \mathrm{Cl}_{2} 50 \mathrm{~mL}$ (5 times)

CC , eluted with a gradient of hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, EtOAc and MeOH-EtOAc

Sephadex LH-20, eluted with MeOH

Sephadex LH-20, eluted with MeOH

CC , eluted with $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Scheme 4 Isolation of compounds from the MeOH extract of Z. mauritiana stem bark

Physical and spectral data of the isolated compounds from the root bark of
 Z. cambodiana

1. Compound ZC-M1 (frangufoline, sss4449)

Colorless needle 16.3 mg , soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathrm{mp} \quad: 216-218{ }^{\circ} \mathrm{C}$ [lit. 234-236 ${ }^{\circ} \mathrm{C}$, Merkuza; \& et al. 1974: 1279-1282]
$R_{f} \quad: \quad 0.36\left(20 \% \mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, a light-blue coloration with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent $[\alpha]_{D}^{27} \quad:-218^{\circ}$ (c 0.20, CHCl_{3}) [lit. $[\alpha]_{D}^{22}:-299^{\circ}$ (c 0.1, CHCl_{3}), Tan; \& Zhou. 2006: 845]
UV $[\lambda]_{\text {max }}^{\text {MeOH }} \mathrm{nm}(\log \varepsilon): 223$ (sh) [lit. 280 (4.49), Zarga; et al. 1995: 504-511]
IR $V_{\max }^{\text {neat }} \mathrm{cm}^{-1}: 3446,3266,2956,2923,2852,1645,1632,1521,1508,1237,1125$, 701
ESIMS (+ve) m/z (\% rel. intensity) : $535[\mathrm{M}+\mathrm{H}]^{+}$(100)
ESIMS (-ve) m/z (\% rel. intensity) : $533[\mathrm{M}-\mathrm{H}]^{-}(100)$
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 300 \mathrm{MHz}$, in CDCl_{3}; TABLE 5, FIGURE 28
${ }^{13} \mathrm{C}$ NMR : $\delta \mathrm{ppm}, 75 \mathrm{MHz}$, in CDCl_{3}; TABLE 5, FIGURE 29

2. Compound ZC-M2 (lotusanine B, sss4635)

Colorless solid 50.1 mg , soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathrm{mp}: 185-187^{\circ} \mathrm{C}$ [lit. not recorded (Zarga; et al. 1995: 504-511)]
$R_{f} \quad: \quad 0.43\left(20 \% \mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, a violet-blue coloration with anisaldehyde- $\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent $[\alpha]_{D}^{23}:-117^{\circ}\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right)$ [lit. isolated as racemic mixture (Zarga; et al. 1995: 504511)

UV $[\lambda]_{\text {max }}^{\text {MeOH }} \mathrm{nm}(\log \varepsilon): 216$ (4.45), 224 (4.35), 279 (4.26) and 305 (sh) [lit. 244 (3.74), 280(3.12), Zarga; et al. 1995: 504-511]
IR $V_{\max }^{\text {neat }} \mathrm{cm}^{-1}: 3456,3391,3277,3065,3030,2956,2925,2853,2853,1671,1646$, 1624, 1602, 1507, 1455, 1419, 1238, 1168, 985, 762, 699
ESIMS (-ve) m/z (\% rel. intensity) : $619.5[\mathrm{M}-\mathrm{H}]{ }^{-}(100)$
ESIMS (+ve) m / z (\% rel. intensity) : $620\left[\mathrm{M}^{+}\right](84), 643[\mathrm{M}+\mathrm{Na}]^{+}(24), 1263[2 \mathrm{M}+\mathrm{Na}]^{+}(100)$ [lit. EIMS (+ve) m/z (\% rel. intensity) : 631 [M] + (0.9), 574 (0.2), 519 (2), 427 (62), 274 (0.3), 243 (0.4), 227 (1), 209 (0.5), 203 (1.6), 200 (1), 190 (4), 148 (100), 135 (11), 134 (12), 114 (100), 96 (4), 91 (9), 86 (9), 84 (II), 72 (27), 68 (17)]
${ }^{1} \mathrm{H}$ NMR $\quad: \quad \delta \mathrm{ppm}, 300 \mathrm{MHz}$, in CDCl_{3}; TABLE 8 , FIGURE 30
${ }^{13} \mathrm{C}$ NMR $: \quad \delta \mathrm{ppm}, 75 \mathrm{MHz}$, in CDCl_{3}; TABLE 8, FIGURE 31

3. Compound ZC-M3 (cambodine, sss4402)

Colorless needle 17.2 mg , soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
mp : $225-227^{\circ} \mathrm{C}$
$R_{f} \quad: \quad 0.27\left(4 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, a violet-blue coloration with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent
$[\alpha]_{D}^{27}:=-198^{\circ}\left(\mathrm{c}=0.190, \mathrm{CHCl}_{3}\right)$
$\mathrm{CD}[\lambda]_{\text {max }}^{\text {MeOH }} \Delta \varepsilon: 220(+15.46), \quad 236(-41.88), 280(+6.44)$
UV $[\lambda]_{\max }^{\text {MeOH }} \mathrm{nm}(\log \mathcal{E}): 227$ (sh)
$\operatorname{IR}[\nu]_{\max }^{K B r} \mathrm{~cm}^{-1}: 3449,3261,3056,3030,2966,2934,1685,1631,1539,1512,1382$, 1242, 1230, 746, 713, 701

ESIMS (+ve) m/z (\% rel. intensity) : $668.3[\mathrm{M}+\mathrm{H}]^{+}(100)$
ESIMS (-ve) m/z (\% rel. intensity) : $666.5[\mathrm{M}-\mathrm{H}]^{-}(100)$
HRTOFMS (APCI ${ }^{+}$) : m/z $668.38079\left[\mathrm{M}+\mathrm{H}^{+}\right.$(calcd. 668.38116 for $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{5}+\mathrm{H}$)
${ }^{1} \mathrm{H}$ NMR $: \delta \mathrm{ppm}, 300 \mathrm{MHz}$, in CDCl_{3}; TABLE 12, FIGURE 31
${ }^{13} \mathrm{C}$ NMR : $\delta \mathrm{ppm}, 75 \mathrm{MHz}$, in CDCl_{3}; TABLE 12, FIGURE 32

Physical and spectral data of the isolated compounds from the stem bark of

Z. mauritiana

1. Compound ZM-M1 (nummularine H, sss4971)

Colorless solid 16.3 mg , soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathrm{mp}: 128-129{ }^{\circ} \mathrm{C}$ (lit. 194-196 ${ }^{\circ} \mathrm{C}$, Tschesche; Elgamal; \& Eckhardt. 1977: 2649-2655)
$R_{f} \quad: \quad 0.48\left(20 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, a blue coloration with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent
$[\alpha]_{D}^{26} \quad:-296^{\circ}\left(\mathrm{c} 0.22, \mathrm{CHCl}_{3}\right)$ [lit. -343° (c 0.27, MeOH), Tschesche; Elgamal; \& Eckhardt. 1977: 2649-2655]
UV $[\lambda]_{\text {max }}^{\text {Meor }} \mathrm{nm}(\log \varepsilon): 268$ (4.05), 319 (3.89) [lit. 268 (4.05), 320 (3.65), Tschesche; Elgamal; \& Eckhardt. 1977: 2649-2655]
IR $[\nu]_{\max }^{K B r} \mathrm{~cm}^{-1}: 3402,3338,2959,2927,2878,1668,1642,1508,1453,1221,1032,701$
ESMS (+ve) $m / z\left(\%\right.$ rel. intensity) : $682[M+H]^{+}(100)$
ESMS (-ve) m/z (\% rel. intensity) : $680[\mathrm{M}-\mathrm{H}]^{-}(5)$
HRTOFMS (APCI, +ve) m/z : $682.3586[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calcd 682.3599 for $\mathrm{C}_{39} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{6}+\mathrm{H}$)
${ }^{1} \mathrm{H}$ NMR $: \delta$ ppm, 300 MHz , in CDCl_{3}; TABLE 14
${ }^{13} \mathrm{C}$ NMR $: \delta \mathrm{ppm}, 75 \mathrm{MHz}$, in $\mathrm{CDCl}_{3} ;$ TABLE 14

2. Compound ZM-M2 (mauritine M, sss4973)

Colorless solid 50.1 mg , soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
mp : $188-189{ }^{\circ} \mathrm{C}$
$R_{f} \quad: \quad 0.31\left(20 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, an orange coloration with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent $[\alpha]_{D}^{27}:-385^{\circ}$ (c $\left.0.28, \mathrm{MeOH}\right)$
$\mathrm{CD}[\lambda]_{\max }^{\text {Meoн }} \Delta \varepsilon: 319$ (-13.00), 264 (-27.58), 231 (+2.19), 217 (-21.81)
UV $[\lambda]_{\text {max }}^{\text {MeOH }} \mathrm{nm}(\log \mathcal{E}): 219$ (4.78), 272 (4.27), 279 (4.23), 289 (4.07), 318 (3.95)
$\operatorname{IR}[v]_{\max }^{K B r} \mathrm{~cm}^{-1}: 3345,2963,2929,2878,1679,1664,1637,1508,1224,1186,1038$, 741
EIMS (+ve) m/z (\% rel. intensity) : $687[\mathrm{M}+\mathrm{H}]^{+}(0.5), 550$ (31), 549 (100), 324 (71), 248 (76), 170 (90), 130 (87), 100 (47), 44 (30)
ESMS (+ve) m / z (\% rel. intensity) : $687[\mathrm{M}+\mathrm{H}]^{+}(100)$
ESMS (-ve) m/z (\% rel. intensity) : $685[\mathrm{M}-\mathrm{H}]^{-}$(15), 721 (100)
HRTOFMS (APCI, +ve) m/z : $687.3856[\mathrm{M}+\mathrm{H}]^{+}$(calcd 687.3865 for $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{6}+\mathrm{H}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \quad \delta \mathrm{ppm}, 300 \mathrm{MHz}$, in CDCl_{3}; TABLE 16
${ }^{13} \mathrm{C}$ NMR $: \delta \mathrm{ppm}, 75 \mathrm{MHz}$, in CDCl_{3}; TABLE 16

CHAPTER 4

RESULTS AND DISCUSSION

1. Cyclopeptide alkaloids from the MeOH extract of Z. cambodiana root bark

In 2006, Suksamrarn; et al. studied on the EtOAc extract (80.0 g) of Thai Z. cambodiana root bark, which showed a purple coloration with anisaldehyde- $\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent, resulted in the isolation of one new triterpene ester, 3-O-vanillylceanothic acid (31) together with five known lupane constituents, lupeol (32), betulinaldehyde (33), betulinic acid (34), 2-O-trans-p-coumaroyl alphitolic acid (35) and alphitolic acid (36), and three ceanothane triterpenes, zizyberanalic acid (37), zizyberenalic acid (38) and ceanothic acid (39) (FIGURE 13), as the antiplasmodial and antituberculosis constituents of the root bark of this plant species (TABLE 2). This was the first report of in vitro antiplasmodial and antimycobacterial activities of the ceanothane-type triterpenes (Suksamrarn; et al. 2006: 535-537).

In this work, the pulverized, dried root bark of Z. cambodiana was extracted successively with EtOAc and MeOH for 144 g and 1.5 kg , respectively. A typical intense blue coloration with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent for the MeOH extract indicated the presence of cyclopeptide alkaloid (Suksamrarn; et al. 2005: 1175-1180), whereas the EtOAc extract gave very weak blue color development. Thus, the MeOH soluble extract (224.9 g) was therefore selected for further chromatographic separations and resulted in the isolation of 14-membered ring cyclopeptide alkaloid including a new cyclopeptide ZC-M3 as 5(14)-scutianine A-type (cambodine) together with two known alkaloids [ZC-M1 (frangufoline) and ZC-M2 (lotusanine B)] (FIGURE 16). Due to the strain of the ring system in the molecule, the 14 -membered cyclopeptide alkaloid showed end absorption band. Their IR spectra exhibited diagnostic peaks for amino (3261-3338 cm^{-1}), amide (1631-1685 cm^{-1}), and aryl ether (1237-1242 cm^{-1}) functions. The structures of these compounds were determined mainly based on their NMR data, MS analysis and by comparison to previously reported data.

ZC-M1 or Frangufoline sss4449

ZC-M2 or Lotusanine B sss4635

sss4402

FIGURE 16 Structures of cyclopeptide alkaloids from the root bark of Z. cambodiana

1.1 Structure determination of compound ZC-M1 (frangufoline, sss4449)

Compound ZC-M1 was obtained as colorless needles, mp 216-218 ${ }^{\circ} \mathrm{C}[$ lit. $234-$ $236{ }^{\circ} \mathrm{C}$ (Merkuza; \& et al. 1974: 1279-1282)] and gave light-blue coloration with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent. On the basis of its ESIMS ($\mathrm{m} / \mathrm{z} 535[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{m} / \mathrm{z} 533[\mathrm{M}+\mathrm{H}]$), a molecular formula of ZC-M1 was established as $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4}$ with support of ${ }^{13} \mathrm{C}$ NMR spectrum. The UV spectrum showed end absorption band, which was consistent with the 14-membered type cyclopeptide (Gournelis; Laskaris; \& Verpoorte. 1998: 7). Their IR spectra exhibited diagnostic peaks for amino ($3266 \mathrm{~cm}^{-1}$), amide (1632-1645 cm^{-1}) and aryl ether ($1237 \mathrm{~cm}^{-1}$) functions.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (TABLE 5, FIGURE 28-29), DEPT and HMQC spectra of compound ZC-M1 indicated the presence of 31 carbon resonances, which provided signals for N, N-dimethyl carbons, four methyls, two methylenes, seventeen methines and six quaternary carbons including three carbonyl carbons. The ${ }^{1} \mathrm{H}$ spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of ZC-M1 showed four methyl doublets, including two methyl doublets at $\delta_{\mathrm{H}} 1.28(J=6.7 \mathrm{~Hz})$ and $1.01(J=6.7 \mathrm{~Hz})$ of the $\beta-\mathrm{OH}$-leucine and two methyl doublets at $\delta_{\mathrm{H}} 0.65(J=6.5 \mathrm{~Hz})$ and $0.60(J=6.5 \mathrm{~Hz})$ of the ring-bound leucine unit. The $\mathrm{C}-8\left(\delta_{\mathrm{C}} 55.2\right)$ and $\mathrm{C}-9\left(\delta_{\mathrm{C}} 81.7\right)$ methine protons appeared as double of doublets at $\delta_{\mathrm{H}} 4.50(J=7.3,10.0 \mathrm{~Hz})$ and $\boldsymbol{\delta}_{\mathrm{H}} 5.0$ ($J=7.3,1.5 \mathrm{~Hz}$), which were due to the α - and β-protons of the β-OH-leucine, respectively. The C-5 methine proton and the C-17 methylene protons of the leucine appeared as double doublet of doublets at $\delta_{\mathrm{H}} 4.04(J=11.3,7.5,3.3 \mathrm{~Hz})$ and two multiplets at $\delta_{\mathrm{H}} 1.69(17 \alpha)$ and 1.23-1.29 (17 β), respectively. The $\mathrm{C}-26\left(\delta_{\mathrm{C}} 70.4\right)$ methine proton of the $N, N-$ dimethylated leucine appeared as overlapped signal at 3.16-3.23. The diastereotopics protons at C-27 ($\delta_{\mathrm{C}} 30.6$) are identified as multiplets at overlapping with the signal of the proton at $\delta_{\mathrm{H}} 3.16-3.23$ of $\mathrm{H}-27 \alpha$ and $\mathrm{H}-25 \beta$ showed as doublet of doublets at $\boldsymbol{\delta}_{\mathrm{H}} 2.85$ $(J=15.8,8.3 \mathrm{~Hz})$. The $\mathrm{C}-1$ olefinic proton appeared at $\delta_{\mathrm{H}} 6.36 d(J=7.5 \mathrm{~Hz})$, the second olefinic proton at $\mathrm{C}-2\left(\delta_{\mathrm{C}} 125.6\right)$ and $\mathrm{NH}-3$, appeared as doublet of doublets at $\boldsymbol{\delta}_{\mathrm{H}} 6.67$ $(J=10.6,7.5 \mathrm{~Hz})$ and $6.46 d(J=10.6 \mathrm{~Hz})$, respectively. The NMR data allowed the assignment for amide protons at $\delta_{\mathrm{H}} 5.78 \mathrm{~d}(J=7.8 \mathrm{~Hz}, \mathrm{NH}-6), \delta_{\mathrm{H}} 7.90 \mathrm{~d}(J=10.0 \mathrm{~Hz}$, NH-24). Unambiguous assignments of all protons of compound ZC-M1 were made by a series of 2D NMR experiments and are reported in TABLE 5 and FIGURE 17.

TABLE $5{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and 2D NMR data of compound ZC-M1 in CDCl_{3}

Position	$\delta_{\text {H }}$	$\delta_{\text {c }}$	HMBC correlations	NOESY correlations
1	$6.36 \mathrm{~d}(\mathrm{~J}=7.5 \mathrm{~Hz})$	115.6	C-2, C-14, C-15	H-2, H-15, NH-3
2	$6.67 \mathrm{dd}(\mathrm{J}=10.6,7.5 \mathrm{~Hz})$	125.6	C-1, C-14, C-15	H-1, NH-3
NH-3	$6.46 \mathrm{~d}(\mathrm{~J}=10.6 \mathrm{~Hz})$	-	-	H-1, H-2, NH-6
4	-	167.4	-	-
5	4.04 ddd ($J=11.3,7.8,3.3 \mathrm{~Hz}$)	52.6		H-17, H-19
NH-6	$5.78 \mathrm{~d}(\mathrm{~J}=7.8 \mathrm{~Hz})$	-	C-17 (weak)	NH-3, H-8
7	-	171.6	-	-
8	$4.50 \mathrm{dd}(\mathrm{J}=7.3,10.0 \mathrm{~Hz})$	55.2	C-9	NH-6, H-12, H-22,
				$\mathrm{H}-24, \mathrm{NMe}_{2}$
9	$5.0 \mathrm{~d}(J=7.3,1.5 \mathrm{~Hz})$	81.7	C-7, C-8, C-11, C-21, C-	H-16, H-21, H-23
11	5.0 ($\mathrm{J}=7.3,1.5 \mathrm{~Hz}$)	155.9	$22, \mathrm{C}-23$	-
12	$7.13 \mathrm{dd}(\mathrm{J}=8.1,2.6)$	123.0	C-11, C-14, C-15	-
13	7.04 m	130.2	C-11	-
14		131.8		-
15	7.07 m	131.7	$\mathrm{C}-1, \mathrm{C}-11, \mathrm{C}-13$	H-1
16	7.19 m	122.7	C-11, C-14, C-15	-
17	$\alpha 1.69 \mathrm{~m}, \beta 1.23-1.29^{\text {a }}$ (signal	39.1	-	H-5, H-18
	overlapped)		- \% -	
18	$0.60-0.65^{\text {a }}$	23.1	3	H-17, H-19, H-20
19	$0.65 \mathrm{~d}(J=6.5 \mathrm{~Hz})$	24.3	C-17, C-18, C-20	H-5, H-18
20	0.60 d ($J=6.5 \mathrm{~Hz})$	20.4	C-17, C-18, C-19	H-18
21	$3.16-3.23^{\text {a }}$ (signal overlapped)	29.3		H-9, H-22, H-23
22	$1.28 \mathrm{~d}(\mathrm{~J}=6.7 \mathrm{~Hz})$	20.3	C-9, C-21, C-23	H-21, H-23
23	$1.01 \mathrm{~d}(\mathrm{~J}=6.7 \mathrm{~Hz})$	15.0	C-9, C-21, C-22	H-9, H-21, H-22
NH-24	$7.90 \mathrm{~d}(J=10.0 \mathrm{~Hz})$			$\mathrm{H}-8, \mathrm{H}-21, \mathrm{NMe}_{2}$
25	-	172.6		-
26	$3.16-3.23^{\text {a }}$ (signal overlapped)	70.4	C-27, C-28	H-27, H-29, H-29',
27		30.6	C-25, C-26, C-28, NMe_{2}	
	$\alpha 3.16-3.23^{\text {a }}$ (signal overlapped)			$\mathrm{H}-26, \mathrm{NMe}_{2}$
	$\beta 2.85 \mathrm{dd}(\mathrm{J}=15.8,8.3 \mathrm{~Hz})$			
28	-	140.3	-	-
29,29'	7.26 m	128.5	C-27, C-28, C-31	H-27
30,30'	7.25 m	128.9	C-29, C-31	
31	7.22 m	126.1	C-30	-
NMe_{2}	2.25 s	41.8	$\mathrm{C}-26$	H-8, H-26, H-27

[^0]Connections among these subgroups were provided by analysis of its HMBC and NOESY spectra (FIGURE 17). The NOE correlations were observed for styrylamine proton at $\delta_{\mathrm{H}} 6.46$ (NH-3) to $\mathrm{H}-5$ ($\delta_{\mathrm{H}} 4.04$) of leucyl proton together with HMBC correlations of $\mathrm{H}-2$ ($\delta_{\mathrm{H}} 6.67$) to $\mathrm{C}-1\left(\delta_{\mathrm{C}} 115.6\right)$ and $\mathrm{C}-14\left(\delta_{\mathrm{C}} 131.8\right)$, and $\mathrm{H}-1$ ($\delta_{\mathrm{H}} 6.36$) to $\mathrm{C}-2\left(\delta_{\mathrm{C}} 125.6\right)$, $\mathrm{C}-14$ and $\mathrm{C}-15$ ($\delta_{\mathrm{C}} 131.7$) indicating that the leucine amino acid was attached to the styrylamine unit. HMBC correlations from $\mathrm{H}-8$ and $\mathrm{H}-9$ to β-OH-leucine carbonyl $\mathrm{C}-7$ (δ_{c} 171.6) confirmed the connection between the ring-bound leucine unit and β-OH-leucine amino acids. A strong NOE enhancement displayed in the NOESY spectrum between the proton at $\delta_{\mathrm{H}} 4.50(\mathrm{H}-8)$ and $\mathrm{NH}-24\left(\delta_{\mathrm{H}} 7.90\right)$ of N, N-dimethylphenylalanine unit, and HMBC correlation observed between $\mathrm{NH}-24$ and terminal carbonyl $\mathrm{C}-25$ (δ_{C} 172.6) confirm that the N, N-dimethylphenylalanine unit attached to the β-OH-leucine amino acids. Furthermore, the NOE correlation of the N, N-dimethyl proton $\delta_{\mathrm{H}} 2.25$ to $\mathrm{H}-8$, and HMBC correlations of $\mathrm{H}-26$ to $\mathrm{C}-25$, and N, N-dimethyl carbon, of $\mathrm{H}-27$ to $\mathrm{C}-25$ and of $\mathrm{H}-29$ and $\mathrm{H}-30$ to $\mathrm{C}-28$, supported the N-methyl phenylalanine as the end amino acid (TABLE 6). These evidences led to the conclusion that the structure of ZC-M1 was frangufoline.

FIGURE 17 Selected HMBC, COSY and NOESY correlations for ZC-M1

The NMR data of ZC-M1 was similar to that of frangufoline (6) (Zarga, M. A.; et al. 1995: 504-511) except for $\mathrm{C}-1$ (TABLE 6). However, carbon chemical shift of ZC-M1 at C-1 ($\delta_{\mathrm{C}} 115.6$) was comparable with that of discarine M(61) $\left(\delta_{\mathrm{C}} 116.8\right)$ (Giacomelli; 2004: 933937), in which both compounds composed of the same cyclic part (TABLE 7).

The Z-geometry of 1,2 double bond was established on the basis of the coupling constant value of 7.5 Hz for $\mathrm{H}-1$ and $\mathrm{H}-2$ (Morel; et al. 1999: 473-477). The coupling constant value of 10.6 Hz between $\mathrm{H}-2$ and $\mathrm{NH}-3$ protons and a small NOE interaction observed among them indicated trans-coplanar of these two protons (Morel; et al. 1999: 473-477). The NH-6 and H-5 protons showed the coupling constant of 7.8 Hz and a small NOE cross peak was observed between both protons suggesting they were in the opposite orientation. In contrast, strong NOE enhancement observed between NH-6 and H-8 allowing these both protons resided on the same side. The vicinal coupling constant value 7.3 Hz of the methine protons $\mathrm{H}-8$ and $\mathrm{H}-9$ indicated a trans- configuration (Gournelis; Laskaris; \& Verpoorte. 1998: 6) together with weak significant NOE observed between these two protons in its NOESY spectrum further supported the trans- relationship between $\mathrm{H}-8$ and $\mathrm{H}-9$.

The stereochemistry of discarine M (61) was assigned as $5 S, 8 S$ and $9 S$ configuration by analysis of the hydrolyzed residue (Giacomelli; et al. 2004: 933-937). The methine protons chemical shift and their coupling constant at H-8 and H-9 of ZC-M1 were similar to that of discarine M (TABLE 7). The β-OH-leucine moiety of discarine M was characterized as erythro relative configuration with vicinal coupling constant of $\mathrm{H}-8 / \mathrm{H}-9$ $J=7.6 \mathrm{~Hz}$ (Giacomelli; 2004: 933-937). In turn, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shift together with the coupling constant of $\mathrm{H}-8 / \mathrm{H}-9(\mathrm{~J}=7.3 \mathrm{~Hz})$ for compound ZC-M1 followed the similar values for that of discarine M , These evidences and its levorotatory optical rotation, $[\alpha]_{D}^{27}$: -218° similar to discarine $\mathrm{M}[\alpha]_{D}^{20}=-176^{\circ}$ (Giacomelli; et al. 2004: 933-937), led to conclusion that this cyclopeptide displayed $5 S, 8 S$ and $9 S$ configurations (FIGURE 17).

Frangufoline (6) (Zarga; \& et al. 1995: 504-511) or daechuine S1 (Han, B. H.; Park; \& Han, Y.N. 1989: 443-448) or Sanjoinine A (Han, B. H.; Park; \& Han, Y.N. 1990: 3315-3319) was isolated from several Ziziphus plants, such as the hexane extract of the seeds of Z. vulgularis var. spinosus (Han, B. H.; Park; \& Han, Y.N. 1990: 3315-3319).

TABLE 6 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZC-M1 with frangufoline (6)

Position	δ_{H}		δ_{C}	
	ZC-M1 (300 MHz)	6 (500 MHz)	ZC-M1 (75 MHz)	6 (125 MHz)
1	$6.36 d(J=7.5 \mathrm{~Hz})$	$6.38 d(J=7.7 \mathrm{~Hz})$	115.6	123.1
2	6.67 dd ($J=10.6,7.5 \mathrm{~Hz}$)	-	125.6	125.9
NH-3	$6.46 d(J=10.6 \mathrm{~Hz})$	-	-	-
CO-4	-	-	167.4	167.6
5	4.04 ddd ($J=11.3,7.8,3.3 \mathrm{~Hz}$)	4.05 m	52.6	52.7
NH-6	$5.78 d(J=7.8 \mathrm{~Hz})$	-	-	-
CO-7	-	-	171.6	171.5
8	$4.50 \mathrm{dd}(\mathrm{J}=7.3,10.0 \mathrm{~Hz})$	4.65 m	55.2	55.4
9	5.0 d $(J=7.3,1.5 \mathrm{~Hz})$	$4.92 \mathrm{dd}(\mathrm{J}=7.5,1.9 \mathrm{~Hz})$	81.7	81.9
11	-		155.9	156.2
12	$7.13 d d(J=8.1,2.6)$	7.00-7.50 m	123.0	122.8
13	7.04 m	$7.00-7.50 \mathrm{~m}$	130.2	115.9
14	-	-	131.8	131.8
15	7.07 m	7.00-7.50 m	131.7	130.3
16	7.19 m	7.00-7.50 m	- 122.7	132.0
17	$\alpha 1.69 \mathrm{~m}, \beta 1.23-1.29^{\text {a }}$ (signal overlapped)	$3.10 \mathrm{~m}$	39.1	39.4
18	$0.60-0.65^{a}$	$2.02 \mathrm{~m}$	-23.1	24.5
19	$0.65 d(J=6.5 \mathrm{~Hz})$	$1.24 \mathrm{~d}(\mathrm{~J}=6.8 \mathrm{~Hz})$	- 24.3	20.6
20	0.60 d $(J=6.5 \mathrm{~Hz})$	$1.14 \mathrm{~d}(\mathrm{~J}=6.8 \mathrm{~Hz})$	- 20.4	23.1
21	3.16-3.23 ${ }^{\text {a }}$ (signal overlapped with	2.05 m	- 29.3	29.4
	$\mathrm{H}-21, \mathrm{H}-27)$			
22	$1.28 \mathrm{~d}(\mathrm{~J}=6.7 \mathrm{~Hz})$	$0.71 \mathrm{~d}(J=6.6 \mathrm{~Hz})$	20.3	15.1
23	$1.01 \mathrm{~d}(\mathrm{~J}=6.7 \mathrm{~Hz})$	$0.57 \mathrm{~d}(\mathrm{~J}=6.6 \mathrm{~Hz})$	15.0	20.4
NH-24	7.90 d $(J=10.0 \mathrm{~Hz})$		-	-
CO-25	-		172.6	172.7
26	3.16-3.23 ${ }^{\text {a }}$ (signal overlapped with		70.4	70.6
	H-21, H-27)			
27	$\alpha 3.16-3.23^{\text {a }}$ (signal overlapped with $\mathrm{H}-21, \mathrm{H}-26)$	$3.34 \operatorname{brd}(\mathrm{~J}=14.8 \mathrm{~Hz})$	30.6	30.9
28	-	-	140.3	140.4
29,29'	7.26 m	-	128.5	128.6
30,30'	7.25 m	-	128.9	129.0
31	7.22 m	-	126.1	126.2
NMe_{2}	2.25 s	2.97s, 2.85s	41.8	41.9

[^1]TABLE 7 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZC-M1 with discarine M (61)

Position	$\delta_{\mathrm{H}}(300 \mathrm{MHz})$		$\delta_{\text {C }}(75 \mathrm{MHz})$	
	ZC-M1	61 (DMSO-d ${ }_{6}, 400 \mathrm{MHz}$)	ZC-M1 (75 MHz)	61 (100 MHz)
1	$6.36 \mathrm{~d}(\mathrm{~J}=7.5 \mathrm{~Hz})$	$6.38 \mathrm{~d}(\mathrm{~J}=7.5 \mathrm{~Hz})$	115.6	116.8
2	6.67 dd ($J=10.6,7.5 \mathrm{~Hz}$)	$6.51 \mathrm{dd}(J=9.7,7.5 \mathrm{~Hz})$	125.6	125.7
NH-3	6.46 d $(J=10.6 \mathrm{~Hz})$	$7.62 \mathrm{~d}(J=9.7 \mathrm{~Hz})$	-	-
4	-	-	167.4	168.0
5	4.04 ddd ($J=11.3,7.8,3.3 \mathrm{~Hz}$)	3.78 m	52.6	55.1
NH-6	$5.78 \mathrm{~d}(\mathrm{~J}=7.8 \mathrm{~Hz})$	$6.72 d(J=8.0 \mathrm{~Hz})$	-	-
7	-		171.6	171.4
8	$4.50 \mathrm{dd}(\mathrm{J}=7.3,10.0 \mathrm{~Hz})$	$4.55 \mathrm{dd}(\mathrm{J}=10.0,7.6 \mathrm{~Hz})$	55.2	54.9
9	$5.0 \mathrm{~d}(\mathrm{~J}=7.3,1.5 \mathrm{~Hz})$	$4.89 \mathrm{dd}(\mathrm{J}=7.7,7.6 \mathrm{~Hz})$	81.7	82.2
11	-		155.9	155.8
12	7.13 dd ($J=8.1,2.6$)	$7.11 \mathrm{~d}(J=8.3 \mathrm{~Hz})$	123.0	121.4
13	7.04 m	$6.93 \mathrm{~d}(\mathrm{~J}=8.3 \mathrm{~Hz})$	130.2	130.9
14	-		131.8	131.1
15	7.07 m	$6.98 d d(J=10,2 \mathrm{~Hz})$	131.7	130.3
16	7.19 m	$7.00 \mathrm{~d}(\mathrm{~J}=8.7 \mathrm{~Hz})$	- 122.7	122.8
NH-24	7.90 d $(J=10.0 \mathrm{~Hz})$	$8.42 \mathrm{~d}(\mathrm{~J}=10.0 \mathrm{~Hz})$	\pm	-

FIGURE 18 Structures of frangufoline and discarine M

1.2 Structure determination of compound ZC-M2 (Iotusanine B, SSS4635)

Compound ZC-M2 was obtained as colorless needles, mp 185-187 ${ }^{\circ} \mathrm{C}$ and gave violet-blue coloration with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent. On the basis of its ESIMS m / z $619.5[\mathrm{M}-\mathrm{H}]$, a molecular formula of $\mathrm{ZC}-\mathrm{M} 2$ was established as $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{5}$ with support of ${ }^{13} \mathrm{C}$ NMR spectrum. The UV absorption maxima at 216, 224 and 279 nm were found, which was consistent with the 14-membered type cyclopeptide alkaloid with coumaroyl moiety (Zarga; et al. 1995: 504-511, Han, B. H.; Park; \& Han Y. N. 1990: 3315-3319, Gonzalez; et al. 1974: 2865-2869). Their IR spectra exhibited diagnostic peaks for amino ($3277 \mathrm{~cm}^{-1}$), amide (1624-1646 cm^{-1}) and aryl ether ($1238 \mathrm{~cm}^{-1}$) functions.

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR (TABLE 8, FIGURE 30-31), DEPT and HMQC spectra of compound ZC-M2 indicated the presence of 31 carbon resonances, which provided signals for four methyls, four methylenes, twenty three methines and eight quaternary carbons including four carbonyl carbons. The ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right)$ of $\mathrm{ZC}-\mathrm{M} 2$ exhibited signals for trans- double bonds at $6.75 d(J=15.4 \mathrm{~Hz})$ and $7.77 d(J=15.4 \mathrm{~Hz})$ which were assigned to the trans-coumaroyl protons, $\mathrm{H}-32\left(\delta_{\mathrm{C}} 116.9\right)$ and $\mathrm{H}-33\left(\delta_{\mathrm{C}} 144.1\right)$, respectively, the carbonyl carbon (CO-31) of coumaroyl group displayed at $\delta_{\mathrm{C}} 166.5$, [$\delta_{\mathrm{H}} 7.56 \mathrm{dd}\left(J=5.9,2.0 \mathrm{~Hz}, \mathrm{H}-35,35^{\prime}\right), 7.41 t\left(J=3.5,2.9 \mathrm{~Hz}, \mathrm{H}-36,36^{\prime}\right)$ and $\delta_{\mathrm{C}} 134.6$ (C-34), 128.5 (C-35,35'), 128.9 (C-36,36') and 130.3 (C-37)] (de Oliveira; et al. 2009: 11951197). The C-26 methine proton of the proline appeared as doublet at $4.70(J=7.4 \mathrm{~Hz})$ (TABLE 10 and FIGURE 31) and three methylene group of proline showed at $\delta_{\mathrm{H}} 2.53 \mathrm{~m}$ $(\mathrm{H}-27 \alpha), 1.80 \mathrm{~m}(\mathrm{H}-27 \beta), 2.13 \mathrm{~m}(\mathrm{H}-28), 3.70$ quin $(J=8.7 \mathrm{~Hz}, \mathrm{H}-29 \alpha)$ and 3.67 quin $(J=8.7 \mathrm{~Hz}, \mathrm{H}-29 \beta$). Two sets of doublets methyl protons of β-OH-leucine $\mathrm{H}-22$ and $\mathrm{H}-23$ showed at $\delta_{\mathrm{H}} 0.69(J=6.6 \mathrm{~Hz})$ and $1.14(J=6.7 \mathrm{~Hz})$. The C-8 and C-9 methine protons appeared as double doublets at $\delta_{\mathrm{H}} 4.44(J=9.4,6.9 \mathrm{~Hz})$ and $5.02(J=6.9,1.7 \mathrm{~Hz})$, respectively, which were due to the α - and β-protons of the β-OH-leucine, respectively. The C-5 methine proton appeared at $\delta_{\mathrm{H}} 4.62 \mathrm{ddd}(J=11.0,7.9,4.1 \mathrm{~Hz})$ and the $\mathrm{C}-17$ methylene protons of the phenylalanine showed at $\delta_{\mathrm{H}} 3.42 \mathrm{dd}(\mathrm{J}=16.0,4.0 \mathrm{~Hz}, \mathrm{H}-17 \alpha)$ and $\delta_{\mathrm{H}} 2.75 \mathrm{dd}(\mathrm{J}=16.0,11.0 \mathrm{~Hz}, \mathrm{H}-17 \beta)$. The $\mathrm{C}-1$ olefinic proton identified as doublet at $\delta_{\mathrm{H}} 6.36 d(J=7.6 \mathrm{~Hz})$, the second olefinic proton at C-2 and NH-3, appeared at $\delta_{\mathrm{H}} 6.73 \mathrm{dd}$ $(J=10.4,7.6 \mathrm{~Hz})$ and $6.56 d(J=10.4 \mathrm{~Hz})$, respectively. The doublet of NH proton were exhibited at $\delta_{\mathrm{H}} 6.09 d(J=7.9 \mathrm{~Hz}, \mathrm{H}-6), 8.09 d(J=9.4 \mathrm{~Hz}, \mathrm{NH}-24)$. Moreover, the
unambiguous assignments of all protons of compound ZC-M2 were made by a series of 2D NMR experiments and are reported in TABLE 8.

Connections among four subgroups were provided by analysis of its HMBC and NOESY spectra. The NOESY correlations were observed for styrylamine proton at $\delta_{\mathrm{H}} 5.56$ $(\mathrm{NH}-3)$ to $\mathrm{H}-5\left(\delta_{\mathrm{H}} 4.62\right)$ of phenylalanine proton together with HMBC correlations of $\mathrm{H}-2$ ($\delta_{\mathrm{H}} 6.37$) to $\mathrm{C}-1\left(\delta_{\mathrm{C}} 115.5\right)$ and $\mathrm{C}-15\left(\delta_{\mathrm{C}} 131.8\right)$, and $\mathrm{H}-1\left(\delta_{\mathrm{H}} 6.36\right)$ to $\mathrm{C}-2\left(\delta_{\mathrm{C}} 125.5\right)$, $\mathrm{C}-14\left(\delta_{\mathrm{C}} 136.6\right)$ and $\mathrm{C}-15$ indicating that phenylalanine amino acid was attached to the styrylamine unit. HMBC correlations from $\mathrm{H}-8$ and $\mathrm{H}-9$ to β-OH-leucine carbonyl $\mathrm{C}-7$ (δ_{c} 171.1) confirmed the connection between the ring-bound leucine unit and β-OH-leucine amino acids. The NOESY correlations of $\mathrm{H}-29\left(\delta_{\mathrm{H}} 3.58\right)$ to trans-double bond proton $\mathrm{H}-32$ ($\delta_{\mathrm{H}} 6.69$) supported that the trans-coumaroyl connected to the N-proline unit. The strong NOE effects between the proton at $\delta_{\mathrm{H}} 8.09(\mathrm{NH}-24)$ to $\mathrm{H}-8\left(\delta_{\mathrm{H}} 4.32\right)$ and $\mathrm{H}-26$ confirmed that the N-coumaroylproline unit attached to the β-OH-leucine amino acids (FIGURE 19). These evidences led to the conclusion that the structure of compound ZC-M2 deduced to be lotusanine B.

Lotusanine $\mathrm{B}(30)$ was isolated from the $\mathrm{C}_{6} \mathrm{H}_{6}$ extract of the whole plant (except the roots) of Z. Iotus (Zarga; et al. 1995: 504-511).

HMBC
NOESY
cosy

FIGURE 19 Selected HMBC, COSY and NOESY correlations for ZC-M2

TABLE $8{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and 2D NMR data of compound ZC-M2 in CDCl_{3}

Position	$\delta_{\text {H }}$	$\delta_{\text {c }}$	HMBC correlations	NOESY correlations
1	$6.36 d(J=7.6 \mathrm{~Hz})$	115.5	C-2, C-15	-
2	$6.73 \mathrm{dd}(\mathrm{J}=10.4,7.5 \mathrm{~Hz})$	125.5	C-1, C-15	NH-3, H-5,
NH-3	6.56 d ($J=10.4 \mathrm{~Hz}$)	-		H-2
4		166.9	$-$	-
5	$4.62 \mathrm{ddd}(\mathrm{J}=11.0,7.9,4.1 \mathrm{~Hz})$	53.4		NH-3, NH-6, H-17,
				H-19
NH-6	$6.09 \mathrm{~d}(\mathrm{~J}=7.9 \mathrm{~Hz})$	-	-	H-5, H-17
CO-7	-	171.1	-	-
8	$4.32 \mathrm{dd}(\mathrm{J}=9.4,6.9 \mathrm{~Hz})$	55.1	C-7, C-9	H-21, NH-24
9	$4.94 \mathrm{dd}(\mathrm{J}=6.9,1.6 \mathrm{~Hz})$	81.8	C-8	H-21, H-22, H-23
11	-	156.0	-	-
12	$7.22 \mathrm{~m}^{\text {a }}$	123.4	C-14	-
13	$7.04 \mathrm{~m}^{\text {a }}$	126.5	C-11	-
14	-	136.6	-	-
15	$7.05 \mathrm{~m}^{\text {a }}$	131.8	C-16	-
16	$7.17 \mathrm{~m}^{\text {a }}$	123.4		-
17	$\alpha 3.42$ dd ($J=16.0,4.0 \mathrm{~Hz}$)	35.9	C-17a, C-18	H-19
	$\beta 2.75 \mathrm{dd}(\mathrm{J}=16.0,11.0 \mathrm{~Hz})$			
17a	-	136.6	,	-
18,18'	$7.27 \mathrm{~m}^{\text {a }}$	128.2	$--\frac{1}{6}$	-
19,19'	$7.07 \mathrm{~m}^{\text {a }}$	128.0	7	H-5, H-17
20	$7.02 \mathrm{~m}^{\text {a }}$	130.1	C-19	
21	$1.82 \mathrm{ddd}(\mathrm{J}=6.7,6.6,1.6 \mathrm{~Hz})$	29.0		H-8, H-9, H-22, H-23,
				NH-24, H-32
22	$1.14 \mathrm{~d}(\mathrm{~J}=6.7 \mathrm{~Hz})$	14.5	C-9, C-21, C-23	H-21, H-23
23	$0.69 \mathrm{~d}(\mathrm{~J}=6.6 \mathrm{~Hz})$	20.4	C-9, C-21, C-22	H-21, H-22, H-32
NH-24	$8.09 \mathrm{~d}(\mathrm{~J}=9.4 \mathrm{~Hz})$			H-21, H-26, H-32
CO-25	-	171.4		
26	$4.16 d(J=7.6 \mathrm{~Hz})$	59.1	C-25	NH-24, H-27
27	$27 \alpha 2.26$ dd ($J=12.2,4.4 \mathrm{~Hz})$	25.8		H-26, H-28
	$27 \beta 1.56 \mathrm{~m}$			
28	2.03 m	24.9	-	H-27, H-29
29	3.58 m	47.1	-	H-28, H32
31	-	166.5	C-31, C-32, C-33	
32	$6.69 \mathrm{~d}(\mathrm{~J}=15.4 \mathrm{~Hz})$	116.9	C-30, C-31, C-33, C-34,	H-29, H-33, H-35
			C-35	
33	$7.73 \mathrm{~d}(\mathrm{~J}=15.4 \mathrm{~Hz})$	144.1	-	H-21, H-23, NH-24,
34		134.6	-	-
35	$7.56 \mathrm{dd}(\mathrm{J}=5.9,2.0 \mathrm{~Hz})$	128.5	C-37	H-32
36	$7.41 \mathrm{t}(\mathrm{J}=3.5,2.9 \mathrm{~Hz})$	128.9	C-34	H-32
37	7.02 m	130.3	C-35, C-36	-

[^2]The comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (TABLE 9) of cyclic part of compound ZC-M2 with lotusanine B (24) (Zarga; et al. 1995: 504-511) showed the similar chemical shift in both compound, except for C-1 [ZC-M2: $\delta_{\mathrm{C}} 115.5, \delta_{\mathrm{H}} 6.36 d(J=7.6 \mathrm{~Hz})$; lotusanine B: $\boldsymbol{\delta}_{\mathrm{C}} 130.9, \delta_{\mathrm{H}} 6.02 d(J=7.8 \mathrm{~Hz}$ (Zarga; \& et al. 1995: 504-511)] (TABLE 8). However, the comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data at $\mathrm{C}-1$ of compound ZC-M2 with waltherine $\mathrm{A}(62)$ [$\delta_{\mathrm{C}} 119.0, \delta_{\mathrm{H}} 6.40 d(J=7.0 \mathrm{~Hz})$], a cyclopeptide with the same cyclic part as ZC-M2, gave the better result (Morel; et al. (1999: 473-477). Moreover, the chemical shift of C-27 at 59.1 ppm was corrected to be 29.1 ppm in lotusanine B (24) (Zarga; et al. 1995: 504-511) by Tan and Zhou (Tan; \& Zhou. 2006: 840-895) and this was comparable to our result.

Waltherine A (62)

FIGURE 20 Structures of lotusanine B, amaiouine and waltherine A

TABLE 9 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZC-M2 with lotusanine (24)

Position	$\delta_{\text {H }}$		$\delta_{\text {c }}$	
	ZC-M2 (300 MHz)	24 (500 MHz)	ZC-M2 (70 MHz)	24 (125 MHz)
1	$6.36 \mathrm{~d}(\mathrm{~J}=7.6 \mathrm{~Hz})$	$6.02 d(J=7.8 \mathrm{~Hz})$	115.5	130.9
2	6.73 dd ($J=10.4,7.6 \mathrm{~Hz}$)	$6.32 d(J=7.6 \mathrm{~Hz})$	125.5	131.8
NH-3	$6.56 d(J=10.4 \mathrm{~Hz})$	-	-	-
4	-	-	166.9	166.6
5	4.62 ddd ($J=11.0,7.9,4.0 \mathrm{~Hz}$)	$4.30 \mathrm{dd}(\mathrm{J}=9.2,6.7 \mathrm{~Hz})$	53.4	53.9
NH-6	$6.09 \mathrm{~d}(J=7.9 \mathrm{~Hz})$	-	-	-
CO-7	-	-	171.1	167.7
8	$4.32 \mathrm{dd}(\mathrm{J}=9.4,6.9 \mathrm{~Hz})$	4.60 m	55.1	55.2
9	$4.94 \mathrm{dd}(\mathrm{J}=6.9,1.6 \mathrm{~Hz})$	$5.00 \mathrm{dd}(\mathrm{J}=6.6,1.9 \mathrm{~Hz})$	81.8	81.9
11	-		156.0	156.0
12	$7.22 \mathrm{~m}^{\text {a }}$	7.38-7.54 m	123.4	123.5
13	$7.04 \mathrm{~m}^{\text {a }}$	7.38-7.54 m	126.5	117.1
14	-	7.38-7.54 m	136.6	126.6
15	$7.05 \mathrm{~m}^{\text {a }}$	7.38-7.54 m	131.8	123.4
16	$7.17 \mathrm{~m}^{\text {a }}$	7.38-7.54 m	- 123.4	130.1
17	$\alpha 3.42 \mathrm{dd}(\mathrm{J}=16.0,4.0 \mathrm{~Hz})$	7.38-7.54 m	- 35.9	36.0
	$\beta 2.75$ dd ($J=16.0,11.0 \mathrm{~Hz})$			
17a	- - + - - - -		136.6	131.8
18,18'	$7.27 \mathrm{~m}^{\text {a }}$	7.38-7.54 m	128.2	128.8
19,19'	$7.07 \mathrm{~m}^{\text {a }}$	7.38-7.54 m	- 128.0	129.0
20	$7.02 \mathrm{~m}^{\text {a }}$	7.38-7.54 m	130.1	125.5
21	1.82 m	1.80 m	29.0	28.9
22	$1.14 \mathrm{~d}(\mathrm{~J}=6.7 \mathrm{~Hz})$	0.66 d ($J=6.6 \mathrm{~Hz}$)	20.4	14.0
23	$0.69 \mathrm{~d}(J=6.6 \mathrm{~Hz})$	$1.12 \mathrm{~d}(J=6.6 \mathrm{~Hz})$	14.5	19.7
NH-24	$8.09 \mathrm{~d}(J=9.4 \mathrm{~Hz})$		-	-
CO-25	-		171.4	171.5
26	$4.16 \operatorname{brd}(J=7.6 \mathrm{~Hz})$	3.39-3.55 m	59.1	59.1
27	$\alpha 2.26$ dd ($J=12.2,4.4 \mathrm{~Hz}$)	3.39-3.55 m	25.8	$59.1{ }^{\text {b }}$
	$\beta 1.56$ m			
28	2.03 m	3.39-3.55 m	24.9	28.1
29	3.58 m	3.39-3.55 m	47.1	47.2
CO-31	-	-	166.5	171.4
32	$6.69 \mathrm{~d}(\mathrm{~J}=15.4 \mathrm{~Hz})$	$6.68 d(J=15.4 \mathrm{~Hz})$	116.9	128.2
33	7.73 d $(J=15.4 \mathrm{~Hz})$	$7.72 d(J=15.4 \mathrm{~Hz})$	144.1	144.1
34	-	-	134.6	136.7
35	7.56 dd ($J=5.9,2.9 \mathrm{~Hz}$)	7.3-7.54 m	128.5	128.1
36	$7.41 \mathrm{t}(\mathrm{J}=3.5,2.9 \mathrm{~Hz})$	7.3-7.54 m	128.9	130.9
37	7.02 m	7.3-7.54 m	130.3	126.6

[^3]TABLE 10 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZC-M2 with waltherine $A(62)$

Position	$\delta_{\text {H }}$		$\delta_{\text {C }}(75 \mathrm{MHz})$	
	ZC-M2 (300 MHz)	62 (400 MHz)	ZC-M2 (75 MHz)	62 (100 MHz)
1	$6.36 d(J=7.6 \mathrm{~Hz})$	$6.40 \mathrm{~d}(\mathrm{~J}=7.0 \mathrm{~Hz})$	115.5	119.0
2	6.73 dd ($J=10.4,7.6 \mathrm{~Hz}$)	6.60 dd ($J=7.5,7.0 \mathrm{~Hz}$)	125.5	125.5
NH-3	$6.56 d(J=10.4 \mathrm{~Hz})$	$6.39 \mathrm{~d}(J=7.5 \mathrm{~Hz})$	-	-
CO-4	-	-	166.9	167.0
5	4.62 ddd ($J=11.0,7.9,4.0 \mathrm{~Hz}$)	4.46 m	53.4	54.5
NH-6	$6.09 \mathrm{~d}(J=7.9 \mathrm{~Hz})$	$6.07 \mathrm{~d}(\mathrm{~J}=8.0 \mathrm{~Hz})$	-	-
CO-7	-		171.1	171.5
8	$4.32 \mathrm{dd}(J=9.4,6.9 \mathrm{~Hz})$	4.38 dd ($J=10,7 \mathrm{~Hz}$)	55.1	54.7
9	$4.94 \mathrm{dd}(\mathrm{J}=6.9,1.6 \mathrm{~Hz})$	$4.96 d d(J=7,2 \mathrm{~Hz})$	81.8	80.7
11	-		156.0	156.0
12	$7.22 \mathrm{~m}^{\text {a }}$	$7.16 d d(J=10,2 \mathrm{~Hz})$	123.4	122.5
13	$7.04 \mathrm{~m}^{\text {a }}$	7.10 dd ($J=10,2 \mathrm{~Hz}$)	126.5	131.5
14	-	-	136.6	131.6
15	$7.05 \mathrm{~m}^{\text {a }}$	$6.98 d d(J=10,2 \mathrm{~Hz})$	131.8	130.0
16	$7.17 \mathrm{~m}^{\text {a }}$	$7.07 \mathrm{dd}(\mathrm{J}=10,2 \mathrm{~Hz})$	-123.4	123.0
17	$\alpha 3.42 \mathrm{dd}$ ($\mathrm{J}=16.0,4.0 \mathrm{~Hz})$	$\alpha 3.06$ dd ($J=15,4 \mathrm{~Hz}$)	[135.9	36.4
	$\beta 2.75$ dd ($J=16.0,11.0 \mathrm{~Hz})$	$\beta 2.94 d d(J=15,8 \mathrm{~Hz})$		
17a	-		136.6	136.0
18,18'	$7.27 \mathrm{~m}^{\text {a }}$	$7.10-7.30{ }^{\text {b }}$	128.2	128.3
19,19'	$7.07 \mathrm{~m}^{\text {a }}$	$7.10-7.30{ }^{\text {b }}$	128.0	128.7
20	$7.02 \mathrm{~m}^{\text {a }}$	$7.10-7.30{ }^{\text {b }}$	130.1	127.6
21	1.82 m	1.88 m	29.0	29.1
22	$1.14 \mathrm{~d}(J=6.7 \mathrm{~Hz})$	$1.25 d(J=7 \mathrm{~Hz})$	20.4	20.2
23	0.69 d $(J=6.6 \mathrm{~Hz})$	$0.92 \mathrm{~d}(J=7 \mathrm{~Hz})$	14.5	15.0
NH-24	$8.09 \mathrm{~d}(\mathrm{~J}=9.4 \mathrm{~Hz})$	$7.60 \mathrm{~d}(\mathrm{~J}=10 \mathrm{~Hz})$	-	-

${ }^{a}$ Assignments confirmed by DEPT, HMQC and HMBC.
${ }^{b}$ Peaks occur in the given range, no assignment.

The stereochemistry of compound ZC-M2 was determined by comparison of the corresponding chemical shift with those of amaiouine (63), a cyclopeptide with related structure as that of compound ZC-M2 (de Oliveira; et al. 2009:1195-1197). The X-ray analysis of amaiouine confirmed all S configurations at amino acid residues in its structure. The levorotatory optical rotation $[\alpha]_{D}^{27}=-117^{\circ}$ similar to amaiouine $[\alpha]_{D}^{25}=-87^{\circ}$ (de Oliveira; et al. 2009:1195-1197), thus ZC-M2 should have displayed all S configurations as shown in FIGURE 19.

TABLE 11 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZC-M2 with amaiouine (63)

Position	ZC-M2		amaiouine (63)	
	$\delta_{\mathrm{H}}(300 \mathrm{MHz})$	$\delta_{\text {c }}$	$\delta_{\mathrm{H}}(300 \mathrm{MHz})$	$\delta_{\text {c }}$
1	$6.36 \mathrm{~d}(\mathrm{~J}=7.6 \mathrm{~Hz})$	115.5	$6.40 \mathrm{~d}(\mathrm{~J}=7.6 \mathrm{~Hz})$	116.3
2	6.73 dd ($J=10.4,7.6 \mathrm{~Hz}$)	125.5	$6.74 d d(J=10.0,7.6 \mathrm{~Hz})$	125.8
NH-3	$6.56 d(J=10.4 \mathrm{~Hz})$	-	$6.59 \mathrm{~d}(\mathrm{~J}=10.0 \mathrm{~Hz})$	-
4	-	166.9	-	167.1
5	4.62 ddd ($J=11.0,7.9,4.0 \mathrm{~Hz}$)	53.4	4.58 m	54.3
NH-6	$6.09 \mathrm{~d}(\mathrm{~J}=7.9 \mathrm{~Hz})$	-	$5.89 \mathrm{~d}(\mathrm{~J}=10.5 \mathrm{~Hz})$	-
CO-7	-	171.1	-	171.1
8	$4.32 \mathrm{dd}(\mathrm{J}=9.4,6.9 \mathrm{~Hz})$	55.1	$4.76 \mathrm{dd}(\mathrm{J}=7.2,2.7 \mathrm{~Hz})$	56.1
9	$4.94 \mathrm{dd}(J=6.9,1.6 \mathrm{~Hz})$	81.8	$5.92 \mathrm{~d}(\mathrm{~J}=7.2 \mathrm{~Hz})$	82.2
11	-	156.0		155.3
12	$7.22 \mathrm{~m}^{\text {a }}$	123.4	7.08 m	130.5
13	$7.04 \mathrm{~m}^{\text {a }}$	126.5	7.24 m	123.7
14		136.6		132.6
15	$7.05 \mathrm{~m}^{\text {a }}$	131.8	7.24 m	123.7
16	$7.17 \mathrm{~m}^{\mathrm{a}}$	123.4	7.18 m	128.6
17	$\alpha 3.42 \mathrm{dd}(\mathrm{J}=16.0,4.0 \mathrm{~Hz})$	35.9	$\alpha 2.78$ dd ($J=15.0,10.2 \mathrm{~Hz}$),	36.3
	$\beta 2.75 d d(J=16.0,11.0 \mathrm{~Hz})$		$\beta 3.37 \mathrm{dd}(\mathrm{J}=15.0,3.6 \mathrm{~Hz})$	
17a		136.6		136.6
18,18'	$7.27 \mathrm{~m}^{\text {a }}$	128.2	7.07 m	128.8
19,19'	$7.07 \mathrm{~m}^{\text {a }}$	128.0	7.20 m	128.7
20	$7.02 \mathrm{~m}^{\text {a }}$	130.1	7.15 m	132.1
21	1.82 m	29.0		137.5
22	$1.14 \mathrm{~d}(\mathrm{~J}=6.7 \mathrm{~Hz})$	20.4	7.54 m	128.1
23	$0.69 \mathrm{~d}(\mathrm{~J}=6.6 \mathrm{~Hz})$	14.5	7.07 m	126.9
	-		7.09 m	128.9
NH	$8.09 \mathrm{~d}(J=9.4 \mathrm{~Hz})$			-
terminal part (proline-coumaroyl moiety)				
CO-25	-	171.4	-	170.6
26	$4.16 \operatorname{brd}(J=7.6 \mathrm{~Hz})$	59.1	$3.90 \mathrm{~d}(\mathrm{~J}=6.9 \mathrm{~Hz})$	59.0
27	$\alpha 2.26 d d(J=12.2,4.4 \mathrm{~Hz})$	25.8	$\alpha 1.42 \mathrm{~m}, \beta 2.20 \mathrm{dd}(11.5,5.1 \mathrm{~Hz})$	26.0
$\beta 1.56$ m				
28	2.03 m	24.9	$\alpha 1.46 \mathrm{~m}, \beta 1.82 \mathrm{dd}(\mathrm{J}=11.5,5.1 \mathrm{~Hz})$	24.7
29	3.58 m	47.1	$3.02 \mathrm{t}(\mathrm{J}=8.4 \mathrm{~Hz}) 3.21 \mathrm{~m}$	47.0
31	-	166.5	-	166.2
32	$6.69 \mathrm{~d}(\mathrm{~J}=15.4 \mathrm{~Hz})$	116.9	$6.27 d(J=15.6 \mathrm{~Hz})$	117.5
33	7.73 d ($J=15.4 \mathrm{~Hz}$)	144.1	7.50 d ($J=15.6 \mathrm{~Hz}$)	143.6
34	-	134.6	-	135.0
35	$7.56 \mathrm{dd}(\mathrm{J}=5.9,2.9 \mathrm{~Hz})$	128.5	7.44 m	129.3
36	$7.41 t(J=3.5,2.9 \mathrm{~Hz})$	128.9	7.20 m	128.6
37	7.02 m	130.3	7.09 m	130.4

[^4]
1.3 Structure determination of compound ZC-M3 (cambodine, sss4402)

Compound ZC-M3 was obtained as colorless needles, mp 225-227 ${ }^{\circ} \mathrm{C}$ and gave violet-blue coloration with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent. On the basis of its HRTOFMS ($\mathrm{APCI}{ }^{+}$) $\mathrm{m} / \mathrm{z} 668.38079[\mathrm{M}+\mathrm{H}]^{+}$(calcd. $668.38116 \mathrm{C}_{39} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{5}+\mathrm{H}$), a molecular formula of ZC-M3 was established as $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{5}$ with support of ${ }^{13} \mathrm{C}$ NMR spectrum. The UV spectrum showed end absorption band, which was consistent with the 14-membered type cyclopeptide (Gournelis; Laskaris; \& Verpoorte. 1998: 7). Their IR spectra exhibited diagnostic peaks for amino ($3338 \mathrm{~cm}^{-1}$), amide (1631-1685 cm^{-1}) and aryl ether (1230-1242 cm^{-1}) functions.

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR (TABLE 12, FIGURE 32-33), DEPT and HMQC spectra of compound ZC-M3 indicated the presence of 39 carbon resonances, which provided signals for four methyls, one N -methyl, three methylenes, twenty three (including one oxygenated and two olefinic) methines and eight quaternary carbons, four of which corresponded to the carbonyl groups. The ${ }^{1}$ H NMR spectrum of compound ZC-M3 displayed signals corresponding to Z-olefinic protons of styrylamine at $\delta_{\mathrm{H}} 6.45 d(J=7.1 \mathrm{~Hz})$ and 6.66 dd $(J=9.6,7.1 \mathrm{~Hz})$, a number of aromatic, methine, methylene and methyl protons including a singlet of N-methyl proton at δ_{H} 2.11. From the COSY and HMQC spectra of compound ZC-M3 and comparison with the reported values led to a conclusion for the presence of p-oxystyrylamine group [$\delta_{\mathrm{H}} 7.37 m(\mathrm{H}-12), 7.36 m(\mathrm{H}-16), 7.17 \mathrm{brd}(\mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}-13), 7.12$ $\operatorname{brd}(J=9.1 \mathrm{~Hz}, \mathrm{H}-15), 6.72 d(J=9.6 \mathrm{~Hz}, \mathrm{NH}-3), 6.66 d d(J=9.6,7.1 \mathrm{~Hz}, \mathrm{H}-2)$ and $6.45 d$ ($J=7.1 \mathrm{~Hz}, \mathrm{H}-1$); $\delta_{\mathrm{C}} 155.1$ ($\mathrm{C}-11$), 132.5 (C-14), 130.1 (C-13), 125.5 (C-2), 122.6 (C-12) and $117.5(\mathrm{C}-1)], \beta$-OH-phenylalanine or β-phenylserine $\left[\delta_{\mathrm{H}} 7.45 \mathrm{~m}(\mathrm{H}-24), 7.42 \mathrm{~m}\right.$ (H-23,23') ,7.10 br dd ($\left.J=7.5,1.0 \mathrm{~Hz}, 22,22^{\prime}\right), 6.85 d(J=8.9 \mathrm{~Hz}, \mathrm{NH}-25), 6.10 d(J=6.9$ $\mathrm{Hz}, \mathrm{H}-9)$ and $4.79 \mathrm{dd}(\mathrm{J}=8.9,6.9 \mathrm{~Hz}, \mathrm{H}-8)$; $\delta_{\mathrm{C}} 171.0(\mathrm{CO}-7), 136.8(\mathrm{C}-21), 128.9(\mathrm{C}-24)$, $128.8\left(\mathrm{C}-23,23^{\prime}\right), 128.1\left(\mathrm{C}-22,22^{\prime}\right), 81.5(\mathrm{C}-9)$ and $56.7(\mathrm{C}-8)$], isoleucine $\left[\delta_{\mathrm{H}} 6.20 \mathrm{~d}\right.$ $(J=8.3 \mathrm{~Hz}, \mathrm{NH}-6), 4.09 \mathrm{dd}(J=8.3,4.2 \mathrm{~Hz}, \mathrm{H}-5), 2.17 \mathrm{~m}(\mathrm{H}-17), 1.25 \mathrm{~m}(\mathrm{H}-18 \alpha), 0.96 \mathrm{~m}$ $(\mathrm{H}-18 \beta), 0.87 t(J=7.2 \mathrm{~Hz}, \mathrm{H}-19)$ and $0.75 d(J=6.8 \mathrm{~Hz}, \mathrm{H}-20) ; \delta_{\mathrm{C}} 167.2$ (CO-4), 59.3 (C-5), $35.2(\mathrm{C}-17), 23.9(\mathrm{C}-18), 11.9(\mathrm{C}-19)$ and $15.8(\mathrm{C}-20)$], phenylalanine $\left[\delta_{\mathrm{H}} 6.98 \mathrm{brd}\right.$ $\left(J=6.1 \mathrm{~Hz}, \mathrm{H}-30,30^{\prime}\right), 7.24 \operatorname{brd}\left(J=7.5 \mathrm{~Hz}, \mathrm{H}-31,31^{\prime}\right), 7.20 \mathrm{~m}(\mathrm{H}-32), 4.20 \mathrm{ddd}(J=10.4$, 7.1, $4.8 \mathrm{~Hz}, \mathrm{H}-27$), $2.89 \mathrm{dd}(\mathrm{J}=14.2,4.8 \mathrm{~Hz}, \mathrm{H}-28 \alpha)$ and $2.46 d d(J=14.2,10.4 \mathrm{~Hz}$,
$\mathrm{H}-28 \beta$) ; $\delta_{\mathrm{C}} 170.9$ (CO-26), 136.3 (C-29), 128.9 ($30,30^{\prime}$), 128.6 ($31,31^{\prime}$), 127.0 (C-32), 54.7 (C-27) and $36.6(\mathrm{C}-28)]$ and N-methylisoleucine $\left[\delta_{\mathrm{H}} 2.50 \mathrm{~d}(J=4.1 \mathrm{~Hz}, \mathrm{H}-35), 2.11 \mathrm{~s}\right.$ (NMe), $1.52 \mathrm{~m}(\mathrm{H}-36), 0.69 \mathrm{~m}(\mathrm{H}-37), 0.66 \mathrm{~m}(\mathrm{H}-38)$ and $0.62 d(J=6.9 \mathrm{~Hz}, \mathrm{H}-39)$; $\delta_{\mathrm{C}} 174.2$ (CO-34), 69.1 (C-35), 37.6 (C-36), 36.5 (NMe), 24.2 (C-37), 11.7 (C-38) and 15.5 (C-39)] units.

Analysis of the COSY, HMBC and NOESY spectra provided the connections among these subunits (TABLE 12). The signal for p-oxystyrylamine proton at NH-3 ($\delta_{\mathrm{H}} 6.72$) showed weak NOESY correlation to signal at $\delta_{\mathrm{H}} 4.09$ ($\mathrm{H}-5$) and the HMBC correlations of the resonance at $\delta_{\mathrm{H}} 6.66(\mathrm{H}-2)$ to $\mathrm{C}-14$ and of $\mathrm{H}-1\left(\delta_{\mathrm{H}} 6.45\right)$ to $\mathrm{C}-2$ allowed the placement of an isoleucine moiety next to the styrylamine group. The correlations of $\mathrm{H}-8$ ($\delta_{\mathrm{H}} 4.79, d d, J=8.9,6.9 \mathrm{~Hz}$) to NH-25 $\left(\delta_{\mathrm{H}} 6.85, d, J=8.9\right)$ in the NOESY and of NH-6 ($\delta_{\mathrm{H}} 6.20, d, J=8.3 \mathrm{~Hz}$) to $\mathrm{C}-7\left(\delta_{\mathrm{C}} 171.0\right), \mathrm{H}-8\left(\delta_{\mathrm{H}} 4.79\right)$ to $\mathrm{C}-7\left(\delta_{\mathrm{C}} 171.0\right), \mathrm{C}-11$ (δ_{C} 155.1), C-21 ($\delta_{\mathrm{C}} 136.8$) and $\mathrm{C}-22\left(\delta_{\mathrm{C}} 128.1\right)$ in the HMBC experiments revealed the connection of isoleucine to β-OH-phenylalanine fragments in the macrocyclic ring. The β-OH-phenylalanine moiety was characterized as erythro relative configuration by the vicinal coupling constant ($J=6.8 \mathrm{~Hz}$) between H-8 and H-9 (Gournelis; Laskaris; \& Verpoorte (1998: 7). NOE enhancements displayed between NH-25 and H-27 in the NOESY spectrum, and the HMBC of the $\mathrm{H}-8$ with the carbonyl carbon signal at $\delta_{\mathrm{C}} 170.9$ (C-26), $\mathrm{H}-27$ to $\mathrm{C}-29\left(\delta_{\mathrm{C}} 136.3\right)$ supported that the phenylalanine unit was attached to the $\beta-\mathrm{OH}$ phenylalanine at $\mathrm{N}-25$. HMBC correlations of $\mathrm{H}-27$ with the carbonyl carbon signal at $\delta_{\mathrm{C}} 174.28$ (C-34) and NOESY correlation of N-methyl proton at $\delta_{\mathrm{H}} 2.11$ with $\mathrm{H}-35\left(\delta_{\mathrm{H}} 2.50\right.$, $d, J=4.1 \mathrm{~Hz}$) supported that the N-methylisoleucine unit was attached to the phenylalanine at $\mathrm{N}-33$. HMBC correlations of $\mathrm{H}-35$ to ${ }^{13} \mathrm{C}$ signals at $\delta_{\mathrm{C}} 15.5$ (C-39), $\delta_{\mathrm{C}} 24.5$ ($\mathrm{C}-37$) and $\delta_{\mathrm{C}} 37.6$ ($\mathrm{C}-36$), of $\mathrm{H}-38$ ($\delta_{\mathrm{H}} 0.66$) to $\mathrm{C}-36$ and NOESY correlation of NMe to the signal at $\delta_{\mathrm{H}} 0.62(\mathrm{H}-39)$ were also observed.

These evidences led to the conclusion that the structure of ZC-M3 was elucidated as new cyclopeptide alkaloid in 5(14)-scutianine A-type and named cambodine after its plant origin.

FIGURE 21 Selected HMBC COSY and NOESY correlations for ZC-M3

The comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of cyclic part of compound ZC-M2 with mauritine L (64), which consistent with the isoleucine as ring-bound amino acid, $\beta-\mathrm{OH}-$ phenylalanine and styrylamine moiety showed the similarly chemical shift, that compound ZC-M3 displayed the similar cyclic part as that of mauritine L (TABLE 13).
Cambodine

Mauritine L (64)

FIGURE 22 Structures of cambodine and mauritine L

TABLE $12{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and 2D NMR data of compound $\mathrm{ZC}-\mathrm{M} 3$ in CDCl_{3}

Position	$\delta_{\mathrm{H}}(300 \mathrm{MHz})$	$\delta_{\text {C }}(75 \mathrm{MHz})$	HMBC correlations	NOESY correlations
1	$6.45 d(J=7.1 \mathrm{~Hz})$	117.5	C-2, C-14, C-15	H-2, NH-3
2	6.66 dd ($J=9.6,7.1 \mathrm{~Hz}$)	125.5	C-1, C-14	$\mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-5$
NH-3	$6.72 d(J=9.6 \mathrm{~Hz})$	-	-	H-2, H-5, NH-6
CO-4	-	167.2	-	-
5	$4.09 \mathrm{dd}(\mathrm{J}=8.3,4.2 \mathrm{~Hz})$	59.3	C-4, C-7, C-17, C-18,	NH-3, H-6, H-17
			C-20	
NH-6	$6.20 d(J=8.3 \mathrm{~Hz})$	-	C-5, C-7	NH-3, H-5, H-8, H-20
CO-7	-	171.0	-	
8	$4.79 \mathrm{dd}(\mathrm{J}=8.9,6.9 \mathrm{~Hz})$	56.7	C-7, C-9, C-26	NH-6, H-23, NH-25
9	$6.10 \mathrm{~d}(\mathrm{~J}=6.9 \mathrm{~Hz})$	81.5	C-7, C-8, C-11, C-21,	H-22, H-22', H-23
11	-	-155.1	$\mathrm{C}-22, \mathrm{C}-22^{\prime}$	-
12	7.37 m	122.6	C-11, C-14	-
13	$7.17 \operatorname{brd}(J=7.7 \mathrm{~Hz})$	130.1	C-11, C-15	-
14	-	132.5		-
15	$7.12 \mathrm{brd}(J=9.1 \mathrm{~Hz})$	131.9	C-13	-
16	7.36 m	123.1	C-11	-
17	2.17 m	35.2		H-5
18	$\alpha 1.25 \mathrm{~m}^{\text {a }}, \beta 0.96 \mathrm{~m}^{\text {a }}$	- 23.9	C-29	-
19	$0.87 t(J=7.2 \mathrm{~Hz})$	11.9	C-17, C-18	-
20	0.75 d ($J=6.8 \mathrm{~Hz}$)	15.8	C-5, C-17, C-18	H-6,
21	-	136.8		-
22,22 ${ }^{\prime}$	$7.10{ }^{\text {b }} \mathrm{brdd}(J=7.5,1.0 \mathrm{~Hz})$	128.1	C-9, C-21, C-23	H-9
23,23 ${ }^{\prime}$	$7.42 \mathrm{~m}^{\text {b }}$	128.8	- 20 OR	H-8
24	$7.45 \mathrm{~m}^{\text {b }}$	128.9	C-23	-
NH-25	$6.85 d(J=8.9 \mathrm{~Hz})$	\square -	C-7, C-26	H-8, H-27
CO-26	-	170.9		-
27	4.20 ddd ($J=10.4,7.1,4.8$	54.7	C-26, C-28, C-29, C-34	NH-25, H-28, H-30,
	Hz)			H-31
28	$\alpha 2.89 \mathrm{dd}(\mathrm{J}=14.2,4.8 \mathrm{~Hz})$	36.6	C-26, C-27, C-29	H-27, H-30, H-31,
	$\beta 2.46$ dd (J = 14.2, 10.4 Hz)			NMe
29		136.3	C-28	-
$30,30^{\prime}$	$6.98 \mathrm{brd}^{\text {b }}(\mathrm{J}=6.1 \mathrm{~Hz})$	128.9	C-26, C-28, C-34, NMe	H-27, H-28
31.31^{\prime}	$7.24 \mathrm{brd}^{\mathrm{b}}(\mathrm{J}=7.5 \mathrm{~Hz})$	128.6	C-27, C-34	H-27, H-28
32	$7.20 \mathrm{~m}^{\text {b }}$	127.0	-	-
CO-34	-	174.2	-	-
35	$2.50 \mathrm{~d}(J=4.1 \mathrm{~Hz})$	69.1	C-36, C-37, C-39, NMe	H-36, H-39, NMe
36	1.52 m	37.6	-	H-35, H-39
37	0.69 m	24.2	C-38	-
38	0.66 m	11.7	C-36, C-37	-
39	$0.62 d(J=6.9 \mathrm{~Hz})$	15.5	C-35, C-36	H-35, H-36, NMe
NMe	2.11 s	36.5	C-26	H-28, H-39, H-35

[^5]TABLE 13 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of cyclic part of compound ZC-M3 with mauritine L (64)

Position	$\delta_{\mathrm{H}}(300 \mathrm{MHz})$		$\delta_{\text {C }}(75 \mathrm{MHz})$	
	ZC-M3	mauritine L (64)	ZC-M3	64
1	$6.45 \mathrm{~d}(J=7.1 \mathrm{~Hz})$	$6.36 \mathrm{~d}(\mathrm{~J}=7.3 \mathrm{~Hz})$	117.5	115.5
2	$6.66 d d(J=9.6,7.1 \mathrm{~Hz})$	$6.71 \mathrm{dd}(J=9.7,7.3 \mathrm{~Hz})$	125.5	125.5
NH-3	$6.72 d(J=9.6 \mathrm{~Hz})$	$6.57 \mathrm{brd}(J=9.7 \mathrm{~Hz})$	-	-
CO-4	-	-	167.2	167.1
5	$4.09 \mathrm{dd}(\mathrm{J}=8.3,4.2 \mathrm{~Hz})$	$4.03 \mathrm{dd}(J=7.8,3.1 \mathrm{~Hz})$	59.3	59.6
NH-6	$6.20 d(J=8.3 \mathrm{~Hz})$	$6.42 \mathrm{~d}(\mathrm{~J}=7.8 \mathrm{~Hz})$	-	-
CO-7	-		171.0	171.5
8	$4.79 \mathrm{dd}(\mathrm{J}=8.9,6.9 \mathrm{~Hz})$	$4.64 \mathrm{dd}(J=8.4,6.3)$	56.7	56.4
9	$6.10 \mathrm{~d}(\mathrm{~J}=6.9 \mathrm{~Hz})$	$6.17 d(J=6.3)$	81.5	81.4
11	-	-	155.1	155.1
12	7.37 m	7.34 m	122.6	123.5
13	$7.17 \operatorname{brd}(J=7.7 \mathrm{~Hz})$	$7.12 \mathrm{brt}(\mathrm{J}=7.8 \mathrm{~Hz})$	130.1	130.1
14	-	-	132.5	132.2
15	$7.12 \operatorname{brd}(J=9.1 \mathrm{~Hz})$	$7.12 \mathrm{brt}(\mathrm{J}=7.8 \mathrm{~Hz})$	131.9	132.2
16	7.36 m	$7.34 \mathrm{~m}^{\text {b }}$	123.1	123.6
17	2.17 m	2.15 m	35.2	35.0
18	$\alpha 1.25 \mathrm{~m}^{\text {a }}, \beta 0.96 \mathrm{~m}^{\text {a }}$	$\alpha 1.61 \mathrm{~m}, \beta 0.95 \mathrm{~m}$	23.9	24.0
19	$0.87 \mathrm{t}(\mathrm{J}=7.2 \mathrm{~Hz})$	$0.81 t(J=7.2 \mathrm{~Hz})$	11.9	12.1
20	$0.75 \mathrm{~d}(\mathrm{~J}=6.8 \mathrm{~Hz})$	0.66 d $(J=6.4 \mathrm{~Hz})$	15.8	16.0
21	-		136.8	137.2
22,22 ${ }^{\prime}$	$7.10{ }^{\text {b }} \mathrm{brdd}(J=7.5,1.0$	$7.50 \operatorname{brd}(J=7.4 \mathrm{~Hz})$	128.1	127.5
23,23 ${ }^{\prime}$	$7.42 \mathrm{~m}^{\text {b }}$	$7.40 \mathrm{~m}^{\mathrm{b}}$	128.8	128.9
24	$7.45 \mathrm{~m}^{\text {b }}$	$7.40 \mathrm{~m}^{\text {b }}$	128.9	128.7
NH-25	$6.85 d(J=8.9 \mathrm{~Hz})$	$7.43{ }^{\text {b }}$	-	-

[^6]The levorotatory optical rotation $[\alpha]_{D}^{27}=-198^{\circ}$ and $C D$ spectrum of compound ZC-M3 displayed an intense negative and a weak positive Cotton effect bands at 236 (-41.88), $280(+6.44) \mathrm{nm}$, respectively, consistent with the $5 S, 8 S$ and $9 S$ configurations presented in the 14-membered ring nucleus (Gournelis; Laskaris; \& Verpoorte. 1998: 7).

2. Cyclopeptide alkaloids from the MeOH extract of \boldsymbol{Z}. mauritiana stem bark

The pulverized, dried stem bark of Z. mauritiana was extracted successively with EtOAc and MeOH. The EtOAc extract gave very weak blue color development. TLC investigation of the EtOAc extract and the comparison with authentic compounds, resulted in the similarly coloration and R_{f} of the known triterpenes 3-O-vanillylceanothic acid (31), lupeol (32), betulinic acid (34), 2-O-trans-p-coumaroyl alphitolic acid (35) and alphitolic acid (36), and ceanothic acid (39) (FIGURE 13).

However, a typical intense blue or orange coloration with anisaldehyde- $\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent for the MeOH extract indicated the presence of cyclopeptide alkaloid (Suksamrarn; et al. 2005), that MeOH soluble extract was therefore selected for further chromatographic separations and resulted in the isolation of one new, in addition to two known, cyclopeptide alkaloids. The UV absorption bands at around 270 and 320 nm were observed for the 13 -membered cyclopeptides, which is the characteristic styrylamine chromophore. The presence of tryptophan moiety showed the absorption bands at around 220, 270 and 290 nm (Gournelis; Laskaris; \& Verpoorte. 1998: 7). Their IR spectra exhibited diagnostic peaks for amino (3338-3345 cm^{-1}), amide (1637-1679 cm^{-1}) and aryl ether (1221-1224 cm^{-1}) functions.

In this work, the isolation and structure elucidation of one new cyclopeptide alkaloid of the 5(13)-zizyphine A-type, mauritine M (60), together with a known alkaloid nummularine H (59) from the stem bark of Z. mauritiana. Their structures were elucidated on the basis of spectroscopic analysis and by comparison their spectroscopic data with the literature values.

ZM-M1 or Nummularine H(59)
ZM-M2 or Mauritine M (60) sss4971

FIGURE 23 Structures of cyclopeptide alkaloids from stem bark of Z. mauritiana

2.1 Structure determination of compound ZM-M1 (nummularine H, sss4971)

Compound ZM-M1 was a colorless solid, mp 128-129 ${ }^{\circ} \mathrm{C}$ and gave a blue coloration with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent. The HRTOFMS displayed a pseudomolecular ion at $\mathrm{m} / \mathrm{z} 682.3586[\mathrm{M}+\mathrm{H}]^{+}$and in combination with the ${ }^{13} \mathrm{C}$ NMR data (TABLE 14) suggesting that ZM-M1 had a molecular formular of $\mathrm{C}_{39} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{6}$. Its IR absorption spectrum showed the presence of amide units at 3338 (NH stretch), 1668, 1642 ($\mathrm{C}=\mathrm{O}$ stretch of secondary amide) and 1221 (C-N stretching of secondary amide). The UV absorption maxima at 268 and 319 nm suggested that compound ZM-M1 was a 13-membered-type cyclopeptide alkaloid (Suksamrarn; et al. 2005: 1175-1180)

The ${ }^{13}$ C NMR (TABLE 14) and DEPT spectra of compound ZM-M1 displayed 39 carbon signals including one N-methyl, one methoxyl, two methyls, five methylenes, 21 methines, nine quaternary carbons, four of which corresponded to the carbonyl groups. The meta-oxygenated styrylamine $\left[\delta_{\mathrm{H}} 6.68(d, J=2.9 \mathrm{~Hz}), 6.88(d, J=9.1 \mathrm{~Hz}), 6.80(d d\right.$, $J=9.1,2.9 \mathrm{~Hz}), 5.93(d, J=8.9 \mathrm{~Hz})$ and $6.96(d d, J=11.3,8.9 \mathrm{~Hz})$] appeared as an ABX coupling (Lee; Su; \& Liu. 2001: 1271-1276) further supported that compound ZM-M1 was a 13-membered cyclopeptide which corresponded to its UV and IR data. The methoxyl signal
at $\delta_{\mathrm{H}} 3.76$ showed a cross-peak with a quaternary aromatic carbon signal at $\delta_{\mathrm{C}} 151.4$ (C-14) in the HMBC spectrum in addition to a strong NOE effect shown between this methoxyl group and $\mathrm{H}-15$ in the NOESY experiment confirmed that the methoxyl group was placed at C-14 of the 13-membered cyclopeptide feature.

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and 2D-NMR (COSY and HMQC) spectra of compound ZM-M1 together with a comparison with the literature reported value (Tschesche; Elgamal; \& Eckhardt. 1977: 2649-2655, Lee; Su; \& Liu. 2001: 1271-1276) led to the assignments for four amino acid units of isoleucine $\left[\delta_{\mathrm{H}} 4.31 t(\mathrm{H}-5), 2.07(m, \mathrm{H}-17), 1.42 m(\mathrm{H}-18 \alpha)\right.$ and $1.18 m(\mathrm{H}-18 \beta), 0.92 t(\mathrm{H}-19)$ and $1.01 d(\mathrm{H}-20) ; \delta_{\mathrm{C}} 60.3,35.5,24.7,11.8$ and 16.1], 3oxygenated proline $\left[\delta_{\mathrm{H}} 4.41 \mathrm{~d}(\mathrm{H}-8), 5.43 \mathrm{dt}(\mathrm{H}-9), 2.41 \mathrm{~m}(\mathrm{H}-21 \alpha)\right.$ and $2.21 \mathrm{~m}(\mathrm{H}-21 \beta)$, $3.96 m(\mathrm{H}-22 \alpha)$ and $2.76 m(\mathrm{H}-22 \beta) ; \delta_{\mathrm{C}} 64.5,76.5,32.3$ and 46.2] (Lee; Su; \& Liu. 2001: 1271-1276), phenylalanine $\left[\delta_{\mathrm{H}} 4.98 \mathrm{~m}(\mathrm{H}-25), 2.93 t(\mathrm{H}-26)\right.$, ca $7.18-7.34 m$ (aromatic protons); $\delta_{\mathrm{C}} 50.9,39.4,135.3,129.0$ and 128.7] (Lee; Su; \& Liu. 2001: 1271-1276), and N methyl phenylalanine $\left[\delta_{\mathrm{H}} 3.22 \mathrm{dd}(\mathrm{H}-33), 2.67\right.$ and $3.12 \mathrm{dd}(\mathrm{H}-34), 7.03-7.34$ (m , aromatic protons) and $2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}) ; \delta_{\mathrm{C}} 65.8,38.9,137.3,129.1,128.7,126.9$ and 35.3] (Lee; Su; \& Liu. 2001: 1271-1276).

Connecting these subgroups were provided by HMBC and NOESY experiments (TABLE 14, FIGURE 24), as follow : the styrylamine proton at $\delta_{\mathrm{H}} 8.42(\mathrm{NH}-3)$ and isoleucyl proton at $\delta_{\mathrm{H}} 4.31(\mathrm{H}-5)$ showed HMBC cross peaks with $\mathrm{C}-4\left(\delta_{\mathrm{C}} 167.0\right)$ along with correlations of $\mathrm{H}-2\left(\delta_{\mathrm{H}} 6.96\right)$ to $\mathrm{C}-13$, and $\mathrm{H}-1\left(\boldsymbol{\delta}_{\mathrm{H}} 5.93\right)$ to $\mathrm{C}-2, \mathrm{C}-12$ and $\mathrm{C}-14$ indicating that isoleucine amino acid was attached to the styrylamine unit. The correlations of $\mathrm{H}-5$, $\mathrm{H}-8$ and $\mathrm{H}-9$ to β-OH-proline carbonyl $\mathrm{C}-7\left(\delta_{\mathrm{C}} 169.6\right)$ revealed the connection between the isoleucine and β-OH-proline amino acids. In the NOESY spectrum, a strong NOE effect displayed between the proline proton at $\delta_{\mathrm{H}} 3.96(\mathrm{H}-22)$ and $\mathrm{H}-25\left(\delta_{\mathrm{H}} 4.98\right)$ of phenylalanine unit, but no HMBC correlation observed between these protons. The HMBC correlation from $\mathrm{H}-26\left(\delta_{\mathrm{H}} 2.93\right)$ to $\mathrm{C}-24, \mathrm{C}-25, \mathrm{C}-27, \mathrm{C}-28 ; \mathrm{NH}-31\left(\delta_{\mathrm{H}} 7.78\right)$ to $\mathrm{C}-32 ; \mathrm{H}-33$ ($\boldsymbol{\delta}_{\mathrm{H}} 3.22$) to $\mathrm{C}-32, \mathrm{C}-35$ and NMe confirmed the phenylalanine as the intermediate unit connected between the β-OH-proline amino acid and N-methyl phynylanine (as the terminal amino acid). The Z-geometry of 1,2 double bond was established on the basis of the coupling constant value of 8.9 Hz for H-1 and H-2 (Suksamrarn; et al. 2005: 1175-1180). The styrylamine proton NH-3 showed strong NOE effect with aromatic proton H-12. Strong

NOE enhancement from $\mathrm{H}-9$ to $\mathrm{H}-12$ and $\mathrm{H}-21 \beta$, whist $\mathrm{H}-8$ showed a cross peak with NH-6.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZM-M1 were closely resembled with that of nummularine $\mathrm{H}(59)$ (TABLE 14) in which the absolute stereochemistry was determined by its $\mathrm{CD}(\mathrm{MeOH})$ spectrum analysis and assigned to be $5 S, 8 S$ and $9 S$ configurations for the macrocyclic ring (Lee; Su; \& Liu. 2001: 1271-1276, Gournelis; Laskaris; \& Verpoorte. 1998: 7). Compound ZM-M1 showed levorotatory optical rotation ($[\alpha]_{D}^{26}=-296^{\circ}$) similar to that of nummularine $\mathrm{H}\left([\alpha]_{D}^{20}=-343^{\circ}\right)$ (Lee; Su; \& Liu. 2001: 1271-1276), thus the stereochemical structure of ZM-M1 was thus established as shown in FIGURE 24.

Nummularine $\mathrm{H}(59)$ has been isolated from Z. nummularia (Tschesche; Elgamal; \& Eckhardt, G. 1977: 2649-2655) and the stem of Paliurus ramossisimus (Rhamnaceae) (Lee; Su; \& Liu. 2001: 1271-1276).

FIGURE 24 Selected HMBC, COSY and NOESY correlations for compound ZM-M1

TABLE $14{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and 2D NMR data of compound ZM-M1 in CDCl_{3}

position	$\delta_{\text {H }}$	$\delta_{\text {C }}$	HMBC correlations	NOESY correlations
1	$5.93 d(J=8.9 \mathrm{~Hz})$	106.7	C-2, C-12, C-14	-
2	6.96 dd ($J=11.3,8.9 \mathrm{~Hz}$)	121.4	C-13	-
NH-3	$8.42 d(J=11.3 \mathrm{~Hz})$	-	C-4	H-12
CO-4	-	167.0	-	-
5	$4.31 \mathrm{t}(\mathrm{J}=4.4 \mathrm{~Hz})$	60.3	C-4, C-7, C-17, C-18, C-20	H-17, H-20
NH-6	7.26 m	-	-	H-8
CO-7	-	169.6	-	-
8	$4.41 \mathrm{~d}(\mathrm{~J}=3.1 \mathrm{~Hz})$	64.5	C-7, C-9, C-22	NH-6, H-9 (weak), H-21 α (weak)
9	$5.43 \mathrm{dt}(\mathrm{J}=6.6,3.1 \mathrm{~Hz})$	76.5	C-7, C-21	H-8 (weak), H-12, H-21 β
11		150.9		-
12	$6.68 d(J=2.9 \mathrm{~Hz})$	111.2	C-14, C-16	NH-3, H-8 (weak), H-9
13	-	124.3	7	-
14	-	151.4		-
15	$6.88 d(J=9.1 \mathrm{~Hz})$	113.7	C-11, C-13	OMe
16	$6.80 \mathrm{dd}(J=9.1,2.9 \mathrm{~Hz})$	117.6	C-14	-
17	2.07 m	35.4	C-4	-
18	1.18 m and 1.42 m	24.7		-
19	$0.92 t(J=7.2 \mathrm{~Hz})$	11.8	C-17, C-18	
20	$1.01 \mathrm{~d}(\mathrm{~J}=6.9 \mathrm{~Hz})$	16.1	C-5, C-17, C-18	-
21	$\alpha 2.21 \mathrm{~m}, \beta 2.41 \mathrm{~m}$	32.3	-	H-22 α
22	$\alpha 3.96$ m, $\beta 2.76 \mathrm{~m}$	46.3	-	$\mathrm{H}-8$ (weak), H-21 $\alpha, \mathrm{H}-25$
CO-24	-	170.6		
25	4.98 m	50.9	-	H-22 $\alpha, \mathrm{H}-26, \mathrm{NH}-31$
26	$2.93 t(J=6.5 \mathrm{~Hz})$	39.4	C-24, C-25, C-27, C-28	H-25, H-31, H-36
27	-	135.3	-	-
28, 28 '	7.18 m	129.0	C-26, C-30	-
29, 29	7.29-7.34 m	128.7	C-27	-
30	7.21 m	127.2	C-28	-
NH-31	$7.78 d(J=8.4 \mathrm{~Hz})$		C-32	H-25, H-26, H-33, H-34
CO-32	-	173.2	-	-
33	$3.22 \mathrm{dd}(\mathrm{J}=9.2,4.3 \mathrm{~Hz})$	65.8	C-32, C-35, NMe	H-31, NMe
34	$\begin{aligned} & 3.12 d d(J=13.4,4.3 \mathrm{~Hz}) \text {, } \\ & 2.67 d d(J=13.4,9.2 \mathrm{~Hz}) \end{aligned}$	38.9	C-32, C-33, C-35, C-37	-
35	-	137.3	-	-
36, 36'	7.03 m	129.1	C-38	H-20
37, 37'	7.29-7.34 m	128.3	C-35	-
38	7.21	126.9	C-36	-
NMe	2.27 s	35.3	C-33	H-31, H-33
OMe	3.79 s	56.0	C-14	H-15

TABLE 15 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZM-M1 with nummularine H (59)

2.2 Structure determination of compound ZM-M2 (mauritine M, sss4973)

Compound ZM-M2 was obtained as a colorless amorphous solid, mp 188-189 ${ }^{\circ} \mathrm{C}$ and gave an orange coloration with anisaldehyde $-\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent. Its molecular formula was established as $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{6}$ by HRTOFMS ($\mathrm{m} / \mathrm{z} 687.3856,[\mathrm{M}+\mathrm{H}]^{+}$), in combination with analysis of the ${ }^{13} \mathrm{C}$ NMR spectrum that showed 38 carbon resonances. The IR spectrum of compound ZM-M2 showed absorption bands at 3345 (amino), 1679, 1664, 1637 (amide), 1508 (aromatic) and $1224 \mathrm{~cm}^{-1}$ (phenol ether) functions. The UV spectrum revealed absorption maxima at 219, 272, 279, 289 and 318 nm , which was consistent with the 13-membered cyclopeptide alkaloid containing a tryptophan moiety (Gournelis; Laskaris; \& Verpoorte. 1998: 1-179, Jossang; Zahir; \& Diakite. 1996: 565-657).

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR (TABLE 16), DEPT and HMQC spectra of compound ZM-M2 indicated the presence of 38 carbon resonances, which provided signals for one N-methyl carbon, four methyls, one methoxyl, five methylenes, 17 methines and ten quaternary carbons including four carbonyl carbons. The observation of an ABX coupling for a metaoxygenated styryl [$\delta_{\mathrm{H}} 6.61$ ($d, J=2.9 \mathrm{~Hz}$), 6.74 ($d d, J=9.0,2.9 \mathrm{~Hz}$), $6.84(d, J=9.0 \mathrm{~Hz}$), $5.91(d, J=9.0 \mathrm{~Hz})$ and $6.91(d d, J=11.2,9.0 \mathrm{~Hz})]$ indicated that compound ZM-M4 was a 13-membered cyclopeptide (Lee; Su; \& Liu. 2001: 1271-6), which corresponded to its UV and IR data. The methoxyl signal at $\delta_{\mathrm{H}} 3.75$ showed a cross-peak with a quaternary aromatic carbon signal at $\delta_{\mathrm{C}} 151.5$ (C-14) in the HMBC spectrum in addition to a strong NOE effect shown between this methoxyl group and H-15 in the NOESY experiment confirming that the methoxyl group was placed at $\mathrm{C}-14$ of the 13 -membered cyclopeptide feature.

Analysis of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and 2D-NMR (${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC) spectra of compound ZM-M2 together with a comparison with the literature reported value (Jossang; Zahir; \& Diakite. 1996: 565-657, Lee; Su; \& Liu. 2001: 1271-1276) led to the assignments for four amino acid units of isoleucine [$\delta_{\mathrm{H}} 4.23 \mathrm{t}(\mathrm{H}-5), 2.00 \mathrm{~m}(\mathrm{H}-17), 1.43 \mathrm{~m}$ (H-18 α) and $1.15 m(\mathrm{H}-18 \beta), 0.87 t(\mathrm{H}-19)$ and $0.96 d(\mathrm{H}-20) ; \delta_{\mathrm{C}} 60.5(\mathrm{C}-5), 35.4(\mathrm{C}-17)$, 24.7 (C-18), 11.7 (C-19) and 16.0 (C-20)] (Jossang; Zahir; \& Diakite. 1996: 565-657), 3-oxygenated proline $\left[\delta_{\mathrm{H}} 4.38 \mathrm{~d}(\mathrm{H}-8), 5.31 \mathrm{dt}(\mathrm{H}-9), 2.25\right.$ and $2.08 \mathrm{~m}(\mathrm{H}-21), 3.79 \mathrm{~m}(\mathrm{H}-$ 22α) and $2.46 m(\mathrm{H}-22 \beta) ; \delta_{\mathrm{C}} 64.3$ (C-8), 76.5 (C-9), 32.3 (C-21) and 46.2 (C-22)] (Lee; Su; \& Liu. 2001: 1271-1276), tryptophan $\left[\delta_{\mathrm{H}} 5.09\right.$ ddd (H-25), 3.21 (H-26 α) and $3.02(\mathrm{H}-26 \beta)$,
$6.76(\mathrm{H}-28), 8.58 \mathrm{br} s(\mathrm{NH}-29), 7.31 \mathrm{~d}(\mathrm{H}-31), 7.15 \mathrm{br} t(\mathrm{H}-32), 7.09 \mathrm{br} t(\mathrm{H}-33), 7.65 d$ (H-34); $\delta_{\mathrm{C}} 50.2$ (C-25), 29.4 (C-26), 109.5 (C-27), 122.8 (C-28), 136.0 (C-30), 111.4 (C-31), 122.2 (C-32), 119.7 (C-33), 118.4 (C-34), 127.3 (C-35)] (Jossang; Zahir; \& Diakite. 1996: 565-657), and N-methyl leucine $\left[\delta_{\mathrm{H}} 3.06 t(\mathrm{H}-38), 1.56\right.$ and $1.41 \mathrm{~m}(\mathrm{H}-39), 1.63 \mathrm{~m}(\mathrm{H}-40)$, $0.90 d(\mathrm{H}-41), 0.92 d \mathrm{H}-42), 2.37 \mathrm{~s}(\mathrm{NMe}) ; \delta_{\mathrm{C}} 63.3(\mathrm{C}-38), 42.7(\mathrm{C}-39), 25.1(\mathrm{C}-40), 21.9$ (C-41), 23.2 (C-42), 35.4 (NMe)] (Jossang; Zahir; \& Diakite. 1996: 565-657).

Connections among these subgroups were provided by analysis of its HMBC and NOESY spectra. The HMBC correlations were observed for styrylamine proton at $\boldsymbol{\delta}_{\mathrm{H}} 8.35$ (NH-3) to $\mathrm{C}-5\left(\delta_{\mathrm{C}} 60.5\right)$ of isoleucyl carbonyl C-4 $\left(\delta_{\mathrm{C}} 167.1\right)$ together with correlations of $\mathrm{H}-2\left(\delta_{\mathrm{H}} 6.91\right)$ to $\mathrm{C}-1, \mathrm{C}-4$ and $\mathrm{C}-13$, and $\mathrm{H}-1\left(\delta_{\mathrm{H}} 5.91\right)$ to $\mathrm{C}-2, \mathrm{C}-12$ and $\mathrm{C}-14$ indicating that isoleucine amino acid was attached to the styrylamine unit. HMBC correlations from $\mathrm{H}-5, \mathrm{H}-8$ and $\mathrm{H}-9$ to 3 -oxygenated proline carbonyl $\mathrm{C}-7\left(\delta_{\mathrm{C}} 170.2\right)$ confirmed the connection between the isoleucine and β-OH-proline amino acids. A strong NOE effects displayed in the NOESY spectrum between the proline proton at $\delta_{\mathrm{H}} 3.79(\mathrm{H}-22)$ and $\mathrm{H}-25$ ($\boldsymbol{\delta}_{\mathrm{H}} 5.09$) of tryptophan unit, but no HMBC correlation observed between these two amino acids. In addition, the latter proton $\mathrm{H}-25$ showed HMBC cross peaks to the carbonyl of leucine at $\delta_{\mathrm{C}} 174.7$ (C-37) confirmed the tryptophan as the intermediate side chain amino acid connected between the leucine terminal amino acid, and the β-OH-proline of the macro molecule. Furthermore, the HMBC correlations of the leucyl proton NH-36 to C-37, and of H-38 to C-37, C-39, C-40 and N-methyl carbon, along with an intense peak at $\mathrm{m} / \mathrm{z} 100$ observed in its ESI mass spectrum also supported the N-methyl leucine as the end amino acid. The Z-geometry of 1,2 double bond was established on the basis of the coupling constant value of 9.0 Hz for H-1 and H-2 (Suksamrarn; \& 2005: 1175-1180). The coupling constant value of 11.2 Hz between $\mathrm{H}-2$ and $\mathrm{NH}-3$ protons and a small NOESY interaction observed among them indicated trans coplanar of these two protons (Suksamrarn; et al. 2005: 1175-1180, Lee; Su; \& Liu. 2001: 1271-1276). The NH-6 and H-5 protons showed the coupling constant of 6.0 Hz and a small NOE cross peak was observed between both protons suggesting they were in the opposite orientation. In contrast, strong NOESY interaction observed between NH-6 and H-8 allowing these both protons resided on the same side. Strong NOE enhancement between $\mathrm{H}-3$ and the aromatic proton $\mathrm{H}-12$, and the latter with H-9 were observed in NOESY spectrum. The small vicinal coupling constant
value 3.2 Hz of the methine protons $\mathrm{H}-8$ and $\mathrm{H}-9$ indicated a trans configuration together with no significant NOE observed between these two protons in its NOESY spectrum further supported the trans relationship between H-8 and H-9. Strong NOESY correlations were observed between $\mathrm{H}-9$ and $\mathrm{H}-21 \beta$ but not with $\mathrm{H}-21 \alpha$ indicating that $\mathrm{H}-9$ and $\mathrm{H}-21 \beta$ were on the same side of the pyrrolidine ring.

FIGURE 25 Selected HMBC, COSY and NOESY correlations for compound ZM-M2

TABLE $16{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and 2D NMR data of compound ZM-M2 in CDCl_{3}

position	$\delta_{\text {H }}$	$\delta_{\text {C }}$	HMBC correlations	NOESY correlations
1	5.91 d ($J=9.0 \mathrm{~Hz}$)	107.2	C-2, C-12, C-14	OMe, H-2
2	6.91 dd ($J=11.2,9.0 \mathrm{~Hz}$)	121.3	C-1, C-4, C-13	H-1
NH-3	$8.35 d(J=11.2 \mathrm{~Hz})$	-	C-1, C-2, C-4	H-12
CO-4	-	167.2	-	-
5	$4.23 t(J=4.5 \mathrm{~Hz})$	60.5	C-4, C-7, C-17, C-18, C-20	NH-3 (small), H-20
NH-6	7.25 d ($J=6.0 \mathrm{~Hz}$)	-	C-4, C-5, C-7, C-17	H-8
CO-7	-	170.2	-	-
8	$4.38 d(J=3.2 \mathrm{~Hz})$	64.3	C-7, C-9, C-21, C-22	NH-6
9	$5.31 \mathrm{dt}(\mathrm{J}=7.2,3.2 \mathrm{~Hz})$	76.4	C-7, C-11, C-21	H-12, $\mathrm{H}-21 \beta$
11		151.9	-	-
12	6.61 d $(J=2.9 \mathrm{~Hz})$	111.2	C-1, C-11, C-14, C-16	NH-3, H-9
13	-	124.1	-	-
14	-	151.4		-
15	6.84 d ($J=9.0 \mathrm{~Hz}$)	113.7	C-11, C-13, C-14, C-16	OMe
16	$6.74 d d(J=9.0,2.9)$	117.6	$\mathrm{C}-11, \mathrm{C}-12, \mathrm{C}-14$	-
17	2.00 m	35.4	-	-
18	$\alpha 1.43 \mathrm{~m}, \beta 1.15 \mathrm{~m}$	24.6	C-19, C-20	-
19	$0.87 \mathrm{t}(\mathrm{J}=7.3 \mathrm{~Hz})$	11.7	C-17, C-18	-
20	$0.96 d(J=6.9 \mathrm{~Hz})$	16.0	$\mathrm{C}-5, \mathrm{C}-17, \mathrm{C}-18$	-
21	$\alpha 2.08 \mathrm{~m}, \beta 2.25 \mathrm{~m}$	32.3	$\mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-22$	-
22	$\alpha 3.79$ m, $\beta 2.46$ m	46.2	c-9, C-21	H-21 $\alpha, \mathrm{H}-25$
CO-24	-	171.3		-
25	5.09 ddd ($J=8.4,8.0,5.1$	50.3	C-24, C-26, C-27, C-37	H-22 α, H-34
26	$3.21 \mathrm{dd}(\mathrm{J}=14.0,5.1 \mathrm{~Hz})$	39.3	C-24, C-25, C-27, C-28, C-35	-
27	-	109.3		-
28	ca 6.76 obscured signal	122.9	C-26, C-27, C-30, C-35	H-29
NH-29	8.58 brs 1H		C-27, C-28, C-30, C-35	H-28, H-31
30	-	136.0		-
31	$7.31 \mathrm{~d}(\mathrm{~J}=7.8 \mathrm{~Hz})$	111.4	C-33, C-35	H-29
32	$7.15 \mathrm{brt}(\mathrm{J}=$ ca 7.6 Hz$)$	122.1	C-30, C-31, C-33, C-34	-
33	$7.09 \mathrm{brt}(\mathrm{J}=$ ca 7.3 Hz$)$	119.6	C-31, C-32, C-34, C-35	-
34	$7.65 d(J=7.5 \mathrm{~Hz})$	118.4	C-27, C-30, C-32, C-35	H-25
35	-	127.2	-	-
NH-36	7.86 d ($J=8.0 \mathrm{~Hz}$)	-	C-25, C-37	H-25, H-38
37	-	174.0	-	-
38	$3.06 t(J=8.5 \mathrm{~Hz})$	63.1	C-37, C-39, C-40, NMe	NH-36, H-41, H-42, NMe
39	$\alpha 1.56$ m, $\beta 1.41 \mathrm{~m}$	42.3	C-37, C-38, C-40, C-41, C-42	-
40	1.63 m	25.0	C-38, C-39, C-41, C-42	-
41	0.90 d $(J=7.0 \mathrm{~Hz})$	21.9	C-39, C-40, C-42	-
42	0.92 d ($J=7.0 \mathrm{~Hz}$)	23.0	C-39, C-40, C-41	-
NMe	2.37 s	35.0	C-38	H-38
OMe	3.75 s	55.9	C-14	H-1, H-15

TABLE 17 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZM-M2 with paliurine G (65)

position	δ_{H}		δ_{C}	
	ZM-M2	paliurine G (65)	ZM-M2	paliurine G
1	$5.91 \mathrm{~d}(\mathrm{~J}=9.0 \mathrm{~Hz})$	$5.92 \mathrm{~d}(J=9.1 \mathrm{~Hz})$	107.2	106.6
2	$6.91 \mathrm{dd}(\mathrm{J}=11.2,9.0 \mathrm{~Hz})$	6.93 dd ($J=11.3,9.1 \mathrm{~Hz}$)	121.3	121.5
NH-3	$8.35 d(J=11.2 \mathrm{~Hz})$	$8.45 d(J=11.3 \mathrm{~Hz})$	-	-
CO-4	-	-	167.2	167.0
5	$4.23 t(J=4.5 \mathrm{~Hz})$	$4.26 d d(J=5.0,4.5 \mathrm{~Hz})$	60.5	60.3
NH-6	7.25 d ($J=6.0 \mathrm{~Hz}$)	7.14 d ($J=4.5 \mathrm{~Hz})$	-	-
CO-7	-	-	170.2	170.2
8	$4.38 d(J=3.2 \mathrm{~Hz})$	$4.42 \mathrm{~d}(\mathrm{~J}=3.2 \mathrm{~Hz})$	64.3	64.4
9	$5.31 \mathrm{dt}(\mathrm{J}=7.2,3.2 \mathrm{~Hz})$	$5.52 \mathrm{dt}(\mathrm{J}=7.4,3.2 \mathrm{~Hz})$	76.4	76.7
11			151.9	151.0
12	$6.61 d(J=2.9 \mathrm{~Hz})$	$6.69 \mathrm{~d}(\mathrm{~J}=2.9 \mathrm{~Hz})$	111.2	111.2
13	-		124.1	124.2
14	-		151.4	151.4
15	$6.84 \mathrm{~d}(\mathrm{~J}=9.0 \mathrm{~Hz})$	$6.89 \mathrm{~d}(J=9.1 \mathrm{~Hz})$	113.7	113.8
16	$6.74 d d(J=9.0,2.9)$	$6.82 d d(J=9.1,2.9 \mathrm{~Hz})$	117.6	117.7
17	2.00 m	2.08	35.4	35.1
18	$1.43 \mathrm{~m}, 1.15 \mathrm{~m}$	$\alpha 1.35, \beta 1.10$	24.6	24.4
19	$0.87 \mathrm{t}(\mathrm{J}=7.3 \mathrm{~Hz})$	$0.86 t(J=6.9 \mathrm{~Hz})$	11.7	11.7
20	$0.96 \mathrm{~d}(\mathrm{~J}=6.9 \mathrm{~Hz})$	$0.94 \mathrm{~d}(\mathrm{~J}=6.9 \mathrm{~Hz})$	16.0	16.2
21	$\alpha 2.08 \mathrm{~m}, \beta 2.25 \mathrm{~m}$	$\alpha 2.10 \mathrm{~m}, \beta 2.60 \mathrm{~m}$	32.3	32.5
22	$\alpha 3.79 \mathrm{~m}, \beta 2.46 \mathrm{~m}$	$\begin{aligned} & \alpha 4.28 \mathrm{dt}(J=8.8,2.7 \mathrm{~Hz}) \\ & \beta 3.55 \mathrm{dt}(J=10.7,6.6) \end{aligned}$	46.2	46.7
CO-24	-	-	171.3	171.5
25	5.09 ddd ($J=8.4,8.0,5.1$	$4.49 \mathrm{dd}(\mathrm{J}=8.8,7.7 \mathrm{~Hz})$	50.3	54.9
26	$3.21 d d(J=14.0,5.1 \mathrm{~Hz})$ ca 3.02 obscured signal	$1.93 d \operatorname{sept}(J=8.8,6.7 \mathrm{~Hz})$	39.3	31.4
27	-	$0.83 \mathrm{~d}(\mathrm{~J}=6.7 \mathrm{~Hz})$	109.3	19.1
28	ca 6.76 obscured signal	0.86 d ($J=6.7 \mathrm{~Hz}$)	122.9	18.1
NH-29	8.58 brs 1H	7.26 d ($J=7.7 \mathrm{~Hz}$)	-	
30	-		136.0	172.4
31	$7.31 \mathrm{~d}(\mathrm{~J}=7.8 \mathrm{~Hz})$	$3.29 \mathrm{dd}(\mathrm{J}=6.9,6.3 \mathrm{~Hz})$	111.4	71.0
32	$7.15 \operatorname{brt}(J=$ ca 7.6 Hz$)$	3.17 dd ($J=13.9,6.9 \mathrm{~Hz}$)	122.1	32.9
33	$7.09 \mathrm{brt}(\mathrm{J}=\mathrm{ca} 7.3 \mathrm{~Hz})$		119.6	139.7
34	$7.65 d(J=7.5 \mathrm{~Hz})$	7.25 m	118.4	129.1
35		7.25 m	127.2	128.3
36	7.86 d $(J=8.0 \mathrm{~Hz})$	7.25 m	-	126.1
37		-	174.0	-
38	$3.06 t(J=8.5 \mathrm{~Hz})$	-	63.1	-
39	$\alpha 1.56 \mathrm{~m}, \beta 1.41 \mathrm{~m}$	-	42.3	-
40	1.63 m	-	25.0	-
41	$0.90 \mathrm{~d}(\mathrm{~J}=7.0 \mathrm{~Hz})$	-	21.9	-
42	0.92 d ($J=7.0 \mathrm{~Hz})$	-	23.0	-
NMe	2.37 s	2.30 s	35.0	42.3
OMe	3.75 s	3.78 s	55.9	56.0

TABLE 18 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound ZM-M2 with mauritine $\mathrm{J}(52)$

position	δ_{H}		δ_{C}	
	ZM-M2	muaritine J (52)	ZM-M2	muaritine J
1	$5.91 \mathrm{~d}(\mathrm{~J}=9.0 \mathrm{~Hz})$	$6.30 \mathrm{~d}(\mathrm{~J}=7.7 \mathrm{~Hz})$	107.2	114.5
2	6.91 dd ($J=11.2,9.0 \mathrm{~Hz})$	6.73 dd ($J=10.5,7.7 \mathrm{~Hz}$)	121.3	125.4
NH-3	$8.35 d(J=11.2 \mathrm{~Hz})$	$6.51 \mathrm{~d}(J=10.5 \mathrm{~Hz})$	-	-
CO-4	-	-	167.2	166.9
5	$4.23 t(J=4.5 \mathrm{~Hz})$	4.20 dd ($J=8.5,3.0 \mathrm{~Hz}$)	60.5	59.0
NH-6	$7.25 d(J=6.0 \mathrm{~Hz})$	6.58 ($d, J=8.5 \mathrm{~Hz}$)	-	-
CO-7	-	-	170.2	170.5
8	4.38 d ($J=3.2 \mathrm{~Hz}$)	$4.25 d(J=5.5 \mathrm{~Hz})$	64.3	63.9
9	$5.31 \mathrm{dt}(\mathrm{J}=7.2,3.2 \mathrm{~Hz})$	5.43 m	76.4	83.4
11			151.9	157.4
12	6.61 d $(J=2.9 \mathrm{~Hz})$	7.18 m	111.2	122.6
13	-	7.05 m	124.1	130.1
14	-		151.4	132.5
15	$6.84 d(J=9.0 \mathrm{~Hz})$	7.09 m	113.7	132.4
16	$6.74 d d(J=9.0,2.9)$	7.24 m	117.6	122.3
17	2.00 m	2.22 m	35.4	35.2
18	$1.43 \mathrm{~m}, 1.15 \mathrm{~m}$	1.30 m	24.6	23.7
19	$0.87 \mathrm{t}(\mathrm{J}=7.3 \mathrm{~Hz})$	$0.88 \mathrm{t}(\mathrm{J}=6.5 \mathrm{~Hz})$	11.7	12.2
20	0.96 d $(J=6.9 \mathrm{~Hz})$	$0.82 \mathrm{~d}(\mathrm{~J}=7.0 \mathrm{~Hz})$	16.0	16.0
21	$\alpha 2.08 \mathrm{~m}, \beta 2.25 \mathrm{~m}$	$\alpha 2.00 \mathrm{~m}, \beta 2.32 \mathrm{~m}$	32.3	31.8
22	$\alpha 3.79 \mathrm{~m}, \beta 2.46 \mathrm{~m}$	$\begin{aligned} & \alpha 3.79 \mathrm{dd}(J=11.5,8.3 \mathrm{~Hz}), \\ & \beta 2.50 \mathrm{~m} \end{aligned}$	46.2	46.4
CO-24	-		171.3	171.4
25	5.09 ddd ($J=8.4,8.0,5.1 \mathrm{~Hz}$	5.00 ddd ($J=8.5,8.0,6.2 \mathrm{~Hz}$)	50.3	50.0
26	$3.21 \mathrm{dd}(\mathrm{J}=14.0,5.1 \mathrm{~Hz})$	3.13 dd ($J=14.5,6.2 \mathrm{~Hz}$)	39.3	29.3
27	-		109.3	110.0
28	ca 6.76 obscured signal	6.76 d ($\mathrm{J}=2.5 \mathrm{~Hz}$)	122.9	122.7
NH-29	8.58 brs	8.12 brs	-	
30	-	-	136.0	135.9
31	$7.31 \mathrm{~d}(\mathrm{~J}=7.8 \mathrm{~Hz})$	$7.31 \mathrm{~d}(\mathrm{~J}=8.0 \mathrm{~Hz})$	111.4	111.2
32	$7.15 \operatorname{brt}(J=$ ca 7.6 Hz$)$	7.10 m	122.1	122.8
33	$7.09 \mathrm{brt}(\mathrm{J}=$ ca 7.3 Hz$)$	7.12 m	119.6	119.8
34	$7.65 d(J=7.5 \mathrm{~Hz})$	$7.68 d(J=8.0 \mathrm{~Hz})$	118.4	118.5
35	-	-	127.2	127.4
NH-36	7.86 d ($J=8.0 \mathrm{~Hz}$)	7.73 d $(J=8.5 \mathrm{~Hz})$	-	-
37	-	-	174.0	174.8
38	$3.06 t(J=8.5 \mathrm{~Hz})$	$2.98 \mathrm{dd}(\mathrm{J}=9.2,5.0 \mathrm{~Hz})$	63.1	63.3
39	$\alpha 1.56 \mathrm{~m}, \beta 1.41 \mathrm{~m}$	$\alpha 1.42 \mathrm{~m}, \beta 1.25 \mathrm{~m}$	42.3	42.5
40	1.63 m	1.59 m	25.0	25.0
41	0.90 d $(J=7.0 \mathrm{~Hz})$	$0.87 \mathrm{~d}(\mathrm{~J}=6.5 \mathrm{~Hz})$	21.9	21.8
42	0.92 d ($J=7.0 \mathrm{~Hz}$)	$0.89 \mathrm{~d}(\mathrm{~J}=6.5 \mathrm{~Hz})$	23.0	23.1
NMe	2.37 s	2.38 s	35.0	35.4
OMe	3.75 s	-	55.9	-

Mauritine J (52)

FIGURE 26 Structures of mauritine J, paliurine G and mauritine M

The CD spectrum of compound ZM-M2 (319 (-13.00), 264 (-27.58) and 217 $(-21.81) \mathrm{nm})$ was similar to that of paliurine $\mathrm{G}(65)$ which constructed with the same amino acid units for the cyclic part, suggested the $5 S, 8 S$ and $9 S$ configurations for the macrocyclic unit (Lee; Su; \& Liu. 2001: 1271-1276). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shift together with the coupling pattern of $\mathrm{H}-8 / \mathrm{H}-9$ and $\mathrm{H}-5 / \mathrm{H}-6$ for compound ZM-M2 followed the similar values as that of paliurine $G(65)$ (Lee; Su; \& Liu. 2001: 1271-1276), thus compound ZM-M2 should have the same S-configuration at the position $\mathrm{C}-5, \mathrm{C}-8$ and $\mathrm{C}-9$ (TABLE 17). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (TABLE 18) of the acyclic part of ZM-M2 which attached to the macrocyclic ring at $\mathrm{N}-22$, were very similar to that of mauritine $\mathrm{J}(52)$, a 14-membered ring cyclopeptide constructed with the same amino acid units (i.e. tryptophan as the intermediate and leucine as the end amino acids) connected to the macrocyclic ring and had L configuration (Jossang; Zahir; \& Diakite. 1996: 565-657). The stereochemistry of these two acyclic amino acid units in compound ZM-M2 was thus tentatively inferred to be L. Therefore, compound ZM-M2 is a new cyclopeptide and named mauritine M (60) after its plant origin as shown in FIGURE 25.

CHAPTER 5

CONCLUSION

Phytochemical investigation of the root of Z. cambodiana led to the isolation of one new 5(14)-scutianine A-type cyclopeptide alkaloid, named cambodine (58). In addition, two known cyclopeptides as 4(14)-frangulanine-type cyclopeptide alkaloid, frangufoline (6) and neutral compound related to 14 -membered cyclopeptide alkaloids, lotusanine B (24).

Investigation of the chemical constituents of the stem bark of Z. mauritiana led to the isolation of the 5(13)-zizyphine A-type with one new cyclopeptide alkaloid, named mauritine M (60) together with one known alkaloid, nummularine H (59), from MeOH extract. The structure of the new cyclopeptide alkaloid was elucidated by spectroscopic techniques, whilst the known compounds were identified by comparisons of spectroscopic data with those of reported values and chromatographic comparison with an authentic sample in several solvent systems.

FIGURE 27 Cyclopeptide alkaloids from selected Thai Ziziphus plants

BIBLIOGRAPHY

BIBLIOGRAPHY

Abdel-galil, F. M.; \& El-Jissry M. A. (1991). Cyclopeptide alkaloids from Zizyphus spina-christi. Phytochemistry. 30(4): 1348-1349.

Acharya, S. B.; et al. (1988). Some pharmacological studies on Ziziphus rugosa saponins. Indian J. Pharmacol. 20: 200-202.

Arai, M. A.; et al. (2008). Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana. Bioorg. Med. Chem. 16(21): 9420-9424.

Bailleul, F.; \& La Feretine, D. P. (1974). Alcaloide peptidique du Feretia apodanthera Del. (Rubiacees). C. R. Acad. Sci. Paris, Serie C. 279: 949.

Bunyapraphatsara, N.; \& Chokechaijaroenporn, O. (1999). In: Thai medicinal plants vol.3. Bangkok: Mahidol University and National Center for Genetic Engineering and Biotechnology. pp. 328-329.

Bunyapraphatsara, N.; \& Chokechaijaroenporn, O. (2000). In: Thai medicinal plants vol.4. Bangkok: Mahidol University and National Center for Genetic Engineering and Biotechnology. pp. 291-292.

Cassels, B. K.; et al. (1974). Cyclopeptide alkaloids of Zizyphus oenoplia. Tetrahedron 30(15): 2461-2466.
de Oliveira, P. L.; et al. (2009). Amaiouine, a cyclopeptide alkaloid from the leaves of Amaioua guianensis. J. Nat. Prod. 72(6):1195-1197.

El-Seedi, H.; et al. (2007). Cyclopeptide alkaloids. Phytochem. Rev. 6(1): 143-165.
Fehlhaber, H. W.; et al. (1972). Alkaloids from Rhamnaceae. XII. Mucronine A, B, and C, peptide alkaloids with a new type of structure, isolated from Zizyphus mucronata Willd. Liebigs Ann. Chem.; 195-207.

Gardner, S.; Sidisunthorn, P.; \& Anusarnsunthorn. V. (2000). A field guide to forest trees of northern Thailand. Bangkok: Kobfai Publishing Project. p.130.

Ghedira, K.; et al. (1993). Two cyclopeptide alkaloids from Zizyphus lotus. Phytochemistry 32(6): 1591-1594.

Ghedira, K.; et al. (1995). Four cyclopeptide alkaloids from Zizyphus lotus. Phytochemistry 38(3): 767-772.

Giacomelli, S. R.; et al. (2004). Cyclic peptide alkaloids from the bark of Discaria americana. Phytochemistry 65(7): 933-937.

Gonzalez, S. M.; et al. (1974). Peptide alkaloids of Scutia buxifolia. Phytochemistry 13(12): 2865-2869.

Gournelis, D. C.; Laskaris, G. G.; \& Verpoorte, R. (1998). Progress in the Chemistry of Organic Natural Products; Herz, H. F. W., Kirby, G. W., Moore, R. E., Tamm, C., Eds.; Springer: New York, 75.

Han, B. H.; Park, M. H.; \& Han Y. N. (1989). Chemical and pharmacological studies on sedative cyclopeptide alkaloids in some Rhamnaceae plants. Pure \& App. Chem. 61(3): 443-448.

Han, B. H.; Park, M. H.; \& Han Y. N. (1990). Cyclic peptide and peptide alkaloids from seeds of Zizyphus vulgaris. 3315-3319. (citing Cho. T. S.; Ro, J. Y.; \& Hong, S. S. (1976) Korean J. Pharmacol. 18: p. 17)

Han, B. H.; Park, M. H.; \& Han Y. N. (1990). Cyclic peptide and peptide alkaloids from seeds of Zizyphus vulgaris. 3315-3319. (citing Huh, J. (1981). Dong Eui Bo Gam. Namsandang, Seoul. Korea. p. 216).

Han, B. H.; Park, M. H.; \& Han Y. N. (1990). Cyclic peptide and peptide alkaloids from seeds of Zizyphus vulgaris. Phytochemistry 29(10): 3315-3319.
Herzog, R.; et al. (1984). Discarin H, ein neues peptidalkaloid aus Discaria febrifuga Chem.Ztg., 108: 406.
Hout, S.; et al. (2006). Screening of selected indigenous plants of Cambodia for antiplasmodial activity. J. Ethnopharm. 107(1): 12-8.
Itokawa, H.; et al. (1997). In The Alkaloids; Cordell, G. A., Ed.; Academic Press: New York, 49: 301.

Jossang, A.; Zahir, A.; \& Diakite, D. (1996). Mauritine J, a cyclopeptide alkaloid from Zizyphus mauritiana. Phytochemistry 42(2): 565-567.
Lagarias, J. C.; et al. (1979). Cyclopeptide Alkaloids. Phencyclopeptines From the Polymorphic Species Ceanothus integerrimus. J. Nat. Prod. 42(2): 220-227.
Lagarias, J. C.; Goff, D.; \& Rapoport, H. (1979). Cyclopeptide alkaloids. Phencyclopeptines from Ceanothus sanguineus. J. Nat. Prod. 42(6): 663-668.

Lee, S.-S.; Su, W.-C.; Liu, K. C. S. C. (2001). Cyclopeptide alkaloids from Paliurus ramossisimus. Phytochemistry 58: 1271-1276.

Lin, H.-Y.; Chen, C.-H.; You, B.-J.; Liu, K. C. S. C.; Lee, S.-S. (2000) Cyclopeptide Alkaloids from Paliurus ramossisimus. J. Nat. Prod. 63(10):1338-1343.

Mascaretti, O. A.; et al. (1972). Peptide alkaloids of Discaria longispina. Phytochemistry 11(3): 1133-1137.

Merkuza, V. M.; \& et al. (1974). Peptide alkaloids of Discaria longispina and Scutia buxifolia. Phytochemistry 13(7):1279-1282.

Morel, A. F.; et al. (1999). Cyclopeptide alkaloids from the bark of Waltheria douradinha. Phytochemistry 51(3):473-477.

Pais, M.; et al. (1964). Alkaloides peptidiques. II. Structure de la Pandamine, alcaloide du Panda oleosa Pierre (Pandaceae). Bull. Soc. Chim. Fr. 817.

Panseeta P. (2010). Cyclopeptide alkaloids and triterpenoids from Ziziphus mauritiana. Dissertation, Ph.D. (Applied Chemistry). Bankok: Graduate school Srinakharinwirot University. Photocopied.

Servis, R. E.; et al. (1969). Ceanothus alkaloids. II. Peptide alkaloids from Ceanothus americanus. J. Am. Chem. Soc. 91(20): 5619-56124.

Shah, A. H.; et al. (1985). A 13-membered cyclopeptide alkaloid from Zizyphus sativa. Phytochemistry 24(11): 2765-2767.

Shah, A. H.; et al. (1985). Sativanine E, a new 13-membered cyclopeptide alkaloid containing a short side-chain, from Zizyphus sativa. J. Nat. Prod. 48(4): 555-558.

Singh, A. K.; et al. (2007). Mauritine K, a new antifungal cyclopeptide alkaloid from Zizyphus mauritiana. J. Indian Chem. Soc. 84(8): 781-784.

Smitinand, T. (2001). Thai plant names. Rev. ed. Bangkok: The forest herbarium, Royal Forest Department. pp. 564-565.

Suksamrarn, S.; et al. (2005). Ziziphine N, O, P and Q, new antiplasmodial cyclopeptide alkaloids from Ziziphus oenoplia var. brunoniana. Tetrahedron 61: 1175-1180.

Suksamrarn, S.; et al. (2006). Ceanothane- and lupane-type triterpenes with antiplasmodial and antimycobacterial activities from Ziziphus cambodiana. Chem. \& Pharm. Bull. 37(32): 535-537.

Tan, N.-H.; \& Zhou, J. (2006). Plant cyclopeptides. Chem. Rev. 106(3):840-895.
Tripathi, M.; et al. (2001). Cyclopeptide alkaloid from Zizyphus jujuba. Fitoterapia 72: 507-510.
Tschesche, R.; Elgamal, M.; \& Eckhardt, G. (1977). Alkaloide aus Rhamnaceen, XXVIII. Nummularine G, H und K, weitere Peptidalkaloide aus Ziziphus nummularia. Chem. Ber. 110(7): 2649-2655.

Tschesche, R.; et al. (1974). Alkaloids from Rhamnaceae. XVII. Mauritine C, D, E, and F, new peptide alkaloids from Ziziphus mauritiana. Liebigs Ann. Chem. 10: 1694-1701.

Tschesche, R.; et al. (1974). Peptide alkaloids from Ziziphus spinachristi. Phytochemistry 13(8): 1633.

Tschesche, R.; et al. (1976). Alkaloids from Rhamnaceae. Part 27. Jubanine A and jubanine B, new cyclopeptide alkaloids from Ziziphus jujuba. Phytochemistry 15(4): 541-542.

Tschesche, R.; et al. (1977). Hysodricanin A, mauritine H, scutianin F und Aralionin C, vier weitere cyclopeptidalkaloide aus Zizyphus, Scutia und Araliothamnus. Phytochemistry 16: 1025-1028.

Tschesche, R.; Kaussmann, E. U.; \& Eckhardt, G. (1973). Alkaloide aus rhamnaceen, XVI. Über die struktur des zizyphins A. Tet. Lett. 14(28): 2577-2580.

Tschesche, R.; Kaussmann, E. U.; \& Fehlhaber, H. W. (1972). Alkaloide aus Rhamnaceen, XIII. Amphibine B, C, D und E, vier Peptidakaloide aus Ziziphus amphibia. Chem. Ber. 105: 3094-3105.

Tschesche, R.; Shah, A. H.; \& Eckhardt, G. (1979). Sativanine A and sativanine B, two new cyclopeptide alkaloids from the bark of Zizyphus sativa. Phytochemistry 18(4): 702-704.

Tschesche, R.; Welters, R.; \& Fehlhaber, H. W. (1967). Alkaloide aus Rhamnaceen, I. Scutianin, ein cyclisches peptid-alkaloid aus Scutia buxifolia Reiss. Chem. Ber. 100: 323-334.

Tschesche, R.; Wilhelm, H.; \& Fehlhaber, H. W. (1972). Alkaloids from Rhamnaceae. XIV. Mauritine A and mauritine B, two new peptide alkaloids from Ziziphus mauritiana. Tet. Lett. 26: 2609-2612.

Voelter, W.; et al. (1987). Studieson the Peptide Alkaloids of Discaria febrifuga. Z. Naturforsch., Teil B, 42: 467-472.

Williams, J. T.; et al. (2006). Ber and other jujubes. Rev. Ed. Southampton: International Centre for Underutilised Crops. pp. 1-8.

Zarga, M. A.; et al. (1995). New cyclopeptide alkaloids from Zizyphus lotus. J. Nat. Prod. 58(4): 504-511.

FIGURE $28{ }^{1} \mathrm{H}$ NMR of compound ZC-M1 (frangufoline (6), sss4449) in CDCl_{3}

FIGURE $29{ }^{13} \mathrm{C}$ NMR of compound ZC-M1 (frangufoline (6), sss4449) in CDCl_{3}

FIGURE $30{ }^{1} \mathrm{H}$ NMR of compound ZC-M2 (lotusanine $\mathrm{B}(\mathbf{2 4})$, sss4635) in CDCl_{3}

FIGURE $31{ }^{13} \mathrm{C}$ NMR of compound ZC-M2 (lotusanine $\mathrm{B}\left(\mathbf{2 4)}\right.$, sss4635) in CDCl_{3}
$\underbrace{\text { Nơp }}$

FIGURE $33{ }^{1} \mathrm{H}$ NMR of compound ZC-M3 (cambodine (58), sss4402) in CDCl_{3}

FIGURE $33{ }^{13} \mathrm{C}$ NMR of compound ZC-M3 (cambodine (58), sss4402) in CDCl_{3}

LIST OF ABBREVIATIONS AND SYMBOLS

$[\alpha]_{D}^{27}$Specific rotation at $27^{\circ} \mathrm{C}$ and sodium D lineδChemical shift (for NMR data)
\mathcal{E}Molar absorptivity$\mu \mathrm{L}$Microliter$\mu \mathrm{M}$Micromolar$\lambda_{\text {max }}$Wavelength at maximal absorption$V_{\text {max }}$Wave number at maximal absorption
$[\mathrm{M}+\mathrm{H}]^{+}$Protonated molecular ion
${ }^{13} \mathrm{C}$ NMR13-Carbon Nuclear Magnetic Resonance Spectroscopy
H NMR
Proton Nuclear Magnetic Resonance Spectroscopy
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \cos \mathrm{Y}$
Homonuclear (Proton-Proton) Correlation Spectroscopy
ara-(1-2)-rha
Arabinosyl-(1 $\rightarrow 2$)- α-L-rhamnoside
br dBroad doublet (for NMR data)br sBroad singlet (for NMR data)

br t
Broad triplet (for NMR data)

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

calcd
Calculated
$\mathrm{C}_{6} \mathrm{H}_{6}$
benzene
CC
Column chromatography
CDCl_{3}
Deuterated chloroform

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Dichloromethane
CHCl_{3}
Chloroform
cm
Centimeter
cm ${ }^{-1}$
Reciprocal centimeter (unit of wave number)
d
Doublet (for NMR data)
dd
Doublet of doublets (for NMR data)
ddd
Double doublet of doublets (for NMR data)

DEPT

Distortionless Enhancement by Polarization Transfer
$d q$
Doublet of quartets (for NMR data)
$d t$
Doublet of triplets (for NMR data)

EIMS

Electron Impact Ionization Mass Spectrometry

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

ESIMS

Electrospray Ionization Mass Spectrometry

EtOAc

Ethyl acetate
g
Gram

GIc

Glucoside
h
Hour

$\mathrm{H}_{2} \mathrm{O}$
 Water

HMBC
${ }^{1} \mathrm{H}$-Detected Heteronuclear Multiple Bond Coherence
HMQC
${ }^{1} \mathrm{H}$-Detected Heteronuclear Multiple Quantum Coherence

HRTOFMS

High Resolution Time of Flight Mass Spectrometry
Hz
Hertz
$\mathbf{I C}_{50}$
50\% Inhibitory Concentration
IR
Infrared
J
Coupling constant
KBr
Potassium bromide
kg
Kilogram

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

L
m
Multiplet (for NMR data)

MeOH

Methanol
mg
Milligram
MIC
Minimum Inhibitory Concentration
mL
Milliliter
mm
Millimeter
NMe
N-methyl
NMe_{2}
N, N-dimethyl
NMR
Nuclear Magnetic Resonance Spectroscopy
NOESY
Nuclear Overhauser Effect Spectroscopy
${ }^{\circ} \mathrm{C}$
Degree Celsius
QCC
Quick column chromatography
Rha
Rhamnoside
S
Singlet (for NMR data)

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

sh
shoulder
t
Triplet (for NMR data)
TLC
Thin Layer Chromatography
UV
Ultraviolet
α
Alpha
β
Beta

CURRICULUM VITAE

Name	$:$ Natthakaln Lomchoey
Date of Birth	$:$ September 01,1985
Place of Birth	$:$ Surin
Address	$: 141$ Tumbol Tawang, Buached District, Surin, Thailand

Educational Background :

2008 Bachelor of Science Degree in Chemistry
Srinakharinwirot University, Bangkok, Thailand
2011 Master of Science Degree in Chemistry
Srinakharinwirot University, Bangkok, Thailand

Publication :

Panseeta, P.; Lomchoey, K.; Prabpai, S.; Kongsaeree, P.; Suksamrarn, A.; Ruchirawat, S.; Kongsaeree, P.; Suksamrarn, A.; Ruchirawat, S.; Suksamrarn, S. (2011).

Antiplasmodial and antimycobacterial cyclopeptide alkaloids from the root of Ziziphus mauritiana. Phytochemistry 72: 909-915.

Scholarships:

2009-2010 The Center of Excellence for Innovation in Chemistry (PERCH-CIC)
Research assistantship

Oral presentation :

Lomchoey, N.; Panseeta, P.; Prabpai, S.; Kongsaeree, P.; Suksamrarn, A.;
Ruchirawat, S.; Suksamrarn, S. New Cyclopeptide Alkaloids with Antiplasmodial and Antimycobacterial Activities from the Root of Ziziphus mauritiana Lam. International

Congress for Innovation in Chemistry (PERCH-CIC Congress VII), Jomtien Palm Beach Hotel \& Resort, Thailand, May 4-7, 2011. Presentation number S2A-08.

Poster presentations :

1. Lomchoey, K.; Panseeta, P.; Thitivorn, Y.; Kongsomboon, P.; Suksamrarn, A.; Suksamrarn, S. Cyclopeptide alkaloids from Ziziphus cambodiana Pierre. Pure and Applied Chemistry International Conference 2011. Miracle Grand Hotel, Thailand, January 5-7, 2011. Poster number OM_O0062.
2. Panseeta, P.; Lomchoey, K.; Prabpai, S.; Kongsaeree, P.; Suksamrarn, A.; Ruchirawat, S.; Suksamrarn, S. Antiplasmodial and antimycobacterial cyclopeptide alkaloids from the root of Ziziphus mauritiana Lam. Pure and Applied Chemistry International Conference 2011. Miracle Grand Hotel, Thailand, January 5-7, 2011. Poster number OM_O0055.

[^0]: ${ }^{\text {a }}$ Assignments confirmed by COSY.

[^1]: ${ }^{\text {a }}$ Assignments confirmed by COSY.

[^2]: ${ }^{\text {a }}$ Assignments confirmed by DEPT, HMQC and HMBC.

[^3]: ${ }^{\text {a }}$ Assignments confirmed by DEPT, HMQC and HMBC.
 ${ }^{\text {b }}$ Data were corrected to 29.1 ppm by Tan and Zhou (Tan; \& Zhou. 2006: 840-895).

[^4]: ${ }^{\text {a }}$ Assignments confirmed by DEPT, HMQC and HMBC.

[^5]: ${ }^{\text {a }}$ Assignments confirmed by $1 \mathrm{H}-1 \mathrm{H}$ COSY and NOESY.
 ${ }^{\mathrm{b}}$ Assignments confirmed by DEPT, HMQC and HMBC.

[^6]: ${ }^{a}$ Assignments confirmed by $1 \mathrm{H}-1 \mathrm{H}$ COSY and NOESY.
 ${ }^{\mathrm{b}}$ Signals without multiplicity was assigned from COSY.

