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In this study, a molybdenum(VI) peroxo a-amino acid complex, MoO(O2)2(a-leucine) (H2O), was pre-
pared and used as an artificial protease for site-specific cleavage of porcine pepsin, a model protein.
Cleavage of pepsin by MoO(O2)2(a-leucine) (H2O) was achieved under photochemical conditions at room
temperature and pH 7.0. The reaction was activated by irradiation of the MoO(O2)2(a-leucine) (H2O)-pro-
tein mixture by UV light (320 and 340 nm) for up to 30 min. No cleavage was observed in the absence of
MoO(O2)2(a-leucine) (H2O) or the light. The photocleavage yield increased with irradiation time. The
cleaved fragments were sequencable, and the cleavage site was assigned to Leu(112)–Tyr(113). The
cleavage reaction was quenched by ethanol. Therefore, hydroxyl radicals may be involved in the reaction
and responsible for the cleavage of the protein. This is the first demonstration of the successful photoc-
leavage of proteins by a molybdenum complex. This observation can provide a new approach for the pho-
tochemical footprinting of metal binding sites on proteins.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The development of chemical reagents to cleave proteins with a
high specificity is of interest in this study since uncatalyzed hydro-
lysis of peptides is extremely slow. At room temperature and neu-
tral pH, the peptide bond is unreactive towards hydrolysis, with
the half-life of 350–600 years [1]. Reagents that can cleave the pro-
tein backbone as chemical proteases with a high specificity can be
useful for converting large proteins into smaller fragments, under-
standing biomolecular recognition with small ligands [2,3], and de-
sign of new therapeutic agents [4,5]. Many protein cleaving
reagents have been developed to induce protein cleavage at se-
lected sites. The design of such reagents should include appropri-
ate recognition elements for binding to the target site with high
affinity and reactive groups which can be activated to produce
the desired cleavage chemistry with high selectivity.

The reactions can be activated using heat (thermal reaction) or
light (photoreaction). Attempts were made to design new reagents
for protein scission [6–8]. However, the studies for protein photoc-
leavage have not been widely investigated. Using light to induce
protein cleavage is one way to activate the chemistry with many
advantages. The reaction can be initiated, sustained, or terminated
conveniently, and light can be a nontoxic, green component of the
reaction mixture. In our laboratories, designed small organic mol-
ecules have been developed for photocleavage of proteins [9].
Pyrenyl chromophores linked to short peptides or to specific sub-
strates have been developed and protein photocleavage at the
probe binding site can be achieved. However, pyrenyl excited
states itself cannot cleave proteins. An electron acceptor is re-
quired to quench the pyrenyl excited states to generate radical
intermediates, which are responsible for the cleavage of the pep-
tide backbone. Therefore, development of new cleaving reagents
without the need of an electron acceptor is the aim of this study.

Metal complexes were directed to specific cleavage of proteins
by using affinity ligands. The achievement of peptide bond cleav-
age was accomplished via oxidative or hydrolytic methods [10–
21]. These studies could be helpful in elucidating the role of metal
ions in natural hydrolases, even though, the precise role of the me-
tal ion in the hydrolysis reactions is still not clear. To date, only a
handful of transition metal complexes have been known to have
the ability to photocleave proteins. Photocleavage of lysozyme,
for example, by Co(III) complexes has been reported [22]. Two
photocleaved fragments were achieved upon irradiation of lyso-
zyme-pentammineaquocobalt(III) complex at 310, 340, or
370 nm, at room temperature and pH 7.0. Searching for new mol-
ecules to expand this repertoire is very challenging.

The use of molybdenum complexes as artificial proteases under
thermal conditions has been recently reported [23,24]. Here, the
ability of a molybdenum complex to selectively cleave a protein,
under photochemical conditions, is reported for the first time.
Molybdenum is one of the important metals found in metalloen-
zymes, and it is the only 4d element with a biological function
[25]. However, photocleavage of proteins by molybdenum
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complexes has not been reported. A molybdenum(VI) peroxo a-
amino acid complex were synthesized by attaching an amino acid
(leucine) to molybdenum trioxide (MoO3) (Scheme 1). Porcine pep-
sin, a zymogen-derived protein, was chosen for the current study
as a model protein since the complete amino-acid sequence of por-
cine pepsin and its crystal structure are known [26–30]. This new
observation may provide the rational design of transition metal
complexes for the footprinting of metal binding sites on proteins
and in addition facilitate in the development of more efficient arti-
ficial proteases.

2. Materials and methods

All materials were reagent grade and were used without further
purification unless otherwise noted. Porcine pepsin (Mol. Wt. =
34,623) was purchased from Sigma Chemical Co. MoO3, H2O2 and
leucine were purchased from Sigma Chemical Co. All solutions
were freshly prepared in 50 mM Tris–HCl buffer, pH 7.0 unless
noted otherwise.

2.1. Synthesis of MoO(O2)2(a-amino acid) (H2O)

MoO(O2)2(a-leucine) (H2O) was synthesized by following the
previously reported method [31]. MoO3 (2.85 g) was dissolved in
30% H2O2 (10 mL) with stirring at 30 �C for 24 h. Leucine (2.70 g)
was gradually added to the previous solution. The solution was
stirred at 30 �C for 24 h. The yellowish precipitate was obtained
(5.51 g; 85.03% yield). The product was identified using UV–Vis
(kmax 350 nM), IR (Nujol) 980.26 cm�1 (Mo@O), 917.25 cm�1

(OAO), 630.16 cm�1 (MoAO(O2)), 531.35 (MoAO(O2)), 1H NMR
(400 MHz, d6-DMSO): 3.82 ppm (1H), 2.67 ppm (2H), 1.98 ppm
(1H), 0.98 ppm (6H).

2.2. Protein cleavage conditions

The protein cleavage was carried out at room temperature. The
protein solution (15 lM) was treated with MoO(O2)2(a-leucine)
(H2O) (2.0 mM) in 50 mM Tris–HCl buffer, pH 7.0 (total volume
200 lL), and the reaction mixtures were irradiated at 320 and
340 nm for 10–30 min with 150 W xenon lamp, using a grating
monochromator to generate the light at selected wavelengths.
Dark control sample was prepared under the same conditions, as
described above, except that the solution was protected from light,
and left at room temperature for the same reaction time as that of
the irradiated reaction mixtures. All reaction mixtures were lyoph-
ilized (freeze-drying) until dryness.

2.3. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–
PAGE)

Protein samples were electrophoresed following the literature
procedure with minor modifications [32]. The dried protein sam-
ples were redissolved in loading buffer (24 lL) (containing SDS
Scheme 1. The structure of molybdenum(VI) peroxo a-amino acid complex,
(MoO(O2)2(a-leucine) (H2O)).
(7% w/v), glycerol (13% v/v), Tris–HCl (50 mM, pH 6.8), mercap-
toethanol (2% v/v) and bromophenol blue (0.01% w/v)). Protein
solutions in loading buffer were heated for 3 min, and then the
samples (8 lL) were loaded on the gel. The gels (10%) were run
by applying 60 V until the dye passed through the stacking gel.
The voltage was then increased to 110 V, as described in the previ-
ous report [9]. The gels were run for 1.5 h, stained with Coomassie
brilliant blue, and destained in acetic acid solution (10%). The
migration distance of molecular weight markers showed a loga-
rithmic relationship to molecular weight. Therefore, band centers
were used to assign approximate molecular weights using the
molecular weight markers for calibration of each gel.

The gels were scanned with a Hewlett–Packard scanner. The
images of the fragment bands were quantitated using ImageJ soft-
ware (v 1.46r), and the photoproduct yields were calculated with
respect to the unreacted protein bands. The ratio of the cleaved
product band intensities to the sum of the intensities of the prod-
ucts and the starting material in each lane was calculated for the
yields. Light intensities at specific wavelengths (320 and 340 nm)
were determined using a ferrioxalate actinometer [33] which
was carried out in the dark room. The actinometer solution was
prepared by dissolving potassium ferrioxalate [K3Fe(C2O4)3.3H2O,
(0.59 g)] in sulfuric acid (0.05 M, 100 mL). Two sets of the diluted
solutions (2, 4, 6, 8 and 10 mM) were prepared. The first set of di-
luted actinometer solutions (3 mL) was irradiated at 320 nm for
10 min, while the other set was irradiated at 340 nm for 10 min.
At the end, the irradiated actinometer solutions were mixed with
0.1% buffered phenanthroline (0.5 mL), and concentration of the
ferrous ion was estimated from absorbance at 510 nm.

2.4. Peptide transfer and amino acid sequencing

The separated peptide fragments on SDS–polyacrylamide gel
were transferred to PVDF membrane with a current of 140 mA
for 1 h using the semi-dry system (BIORAD) with CAPS buffer, pH
10.5. The transferred protein fragments on PVDF membrane were
stained with Coomassie brilliant blue (0.1% Coomassie brilliant
blue R-250 in 40% methanol and 1% acetic acid). The desired bands
were cut and sent for N-terminal amino acid composition analysis
(Midwest Analytical, Inc., MO, USA). Chemical sequencing was per-
formed on an automated protein sequencer. Five cycles were per-
formed to identify the N-terminus of the cleaved fragments.

2.5. Quenching of protein cleavage reaction by ethanol

The participation of hydroxyl radical intermediate in the cleav-
age reaction is tested in quenching studies with ethanol. Ethanol
(0.5 mM) was added to the reaction mixture (pepsin + MoO(O2)2(-
a-leucine) (H2O)), and the solution was irradiated at 340 nm for
20 min. The reaction mixture was dried, and the protein sample
was electrophoresed following the above procedure.
3. Results and discussion

3.1. Cleavage of pepsin

Pepsin was successfully cleaved by MoO(O2)2(a-leucine) (H2O),
under activation by light, at mild conditions (room temperature,
pH 7.0). The protein cleavage was monitored in gel electrophoresis
experiments under denaturing conditions. Irradiation of pepsin
(15 lM) in the presence of MoO(O2)2(a-leucine) (H2O) (2.0 mM)
at 320 nm and 340 nm for 10, 20 and 30 min resulted in cleavage
of the protein as demonstrated in SDS–PAGE experiments
(Fig. 1). The cleaved pepsin resulted in at least three fragments (I,
II and III) with the molecular weights of approximately 25, 20



1        2        3       4        5        6        7       8 

21.5- 

36.5- 
31- 

I

II 

14.4- 
III 

Fig. 1. SDS–PAGE of the photocleaved products of pepsin by MoO(O2)2(a-leucine)
(H2O). Lane 1 contained molecular weight markers as indicated (kDa). Lanes 2–8
contained pepsin (15 lM) and MoO(O2)2(a-leucine) (H2O) (2.0 mM). Lane 2 was the
dark control. Samples in lanes 3–5 were irradiated at 320 nm for 10, 20, and 30 min,
respectively while samples in lanes 6–8 were irradiated at 340 nm for 10, 20, and
30 min, respectively. Fig. 3. Plot of cleavage yield vs. MoO(O2)2(a-leucine) (H2O) concentration. The

mixtures of pepsin (15 lM) and MoO(O2)2(a-leucine) (H2O) (0.000, 0.125, 0.250,
0.500, 1.000 and 2.000 mM) were irradiated at 340 nm for 10 min.
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and 12 kDa, respectively (lanes 4–8). However, irradiation of the
protein-MoO(O2)2(a-leucine) (H2O) mixture at 320 nm for 10–
30 min gave faint bands of the cleaved fragments (lanes 3–5,
respectively), compared to the results obtained at 340 nm (lanes
6–8). No cleavage was observed in the absence of MoO(O2)2(a-leu-
cine) (H2O) (data not shown), while the weak but detectable cleav-
age band (band I) was observed even the absence of the light (dark
control, lane 2). Self cleavage of pepsin was not observed at room
temperature, indicating that the weak band (band I) could be the
reaction mediated by the metal complex. However, leaving the
mixture (the dark control) for longer reaction times at room tem-
perature (without shining the light) did not result bands II and III.

The backbone cleavage of pepsin by the MoO(O2)2(a-leucine)
(H2O) showed the expected dependence on reaction time. Analysis
of the cleavage data with pepsin clearly indicated increased yields
of the fragments with reaction time (Fig. 2). The highest yield
(14.3%) was obtained when irradiating the samples at 340 nm for
30 min. The yields of the cleavage fragments from pepsin were fol-
lowed as a function of molybdenum complex concentration
(0.125–2.00 mM) (Fig. 3). The product yield increases with concen-
tration as expect, suggesting that the metal complex is activated by
light and responsible for the cleavage reaction. However, at con-
centration higher than 1.00 mM, the product yield increases only
marginally.

Although the complex absorbs more light at 320 nm compared
to 340 nm, the spectrum is not a sharp absorption band (see Sup-
plementary Information). However, from the actinometry experi-
ment, the light intensity at 340 nm is higher than that at 320 nm
by �31%. Therefore, the observed higher yields at 340 nm could
be due to the higher light intensity of this wavelength or this might
be due to the coordination sphere of the molybdenum atom in the
Fig. 2. Plot of % photoproduct yields vs. time of irradiation.
complex changed from water to oxygen atom in amino group or
any atom in substituent of amino acid, during binding to the pro-
tein, resulting in red shift of the absorption band (Scheme 2). To
elaborate this result, more investigation on the binding of this
complex and pepsin are needed in the future studies.
3.2. Amino acid sequencing and cleavage sites determination

The peptide fragments from the gels were isolated and sub-
jected to amino acid sequencing to examine the location of cleav-
age site on pepsin. N-terminal sequencing of fragment I (�25 kDa)
indicated the sequence IGDEP which corresponds to the known N-
terminal sequence of native pepsin. N-terminal sequencing of frag-
ment II (�20 kDa) showed an amino acid sequence YYAPF. The se-
quence of YYAPF indicated the cleavage site at Leu 112–Tyr 113.
The protein band of fragment III (�12 kDa) was very faint, and
the observed N-terminal sequencing data were not clear. This
might be due to the insufficient amount of the blotted protein
for the sequence analysis, or the fragment may not be amenable
to sequencing. The cleavage pattern can be concluded as shown
in Scheme 3.

From the cleavage results, we can conclude that three observed
cleaved fragments may arise from two cleavage sites, with a small
amount of another fragment (�9 kDa) that is not distinguishable in
the gels. However, only one cleavage site was clearly concluded. As
seen from Scheme 3, the cleavage between Leu 112 and Tyr 113
gives another sequence (N-terminal sequence) with molecular
weight of �12 kDa, which could be the observed fragment III on
the gels. The structure of the binding site residues on the protein
is expected to account for specific binding of the metal complex
to the protein. By looking down the three-dimensional structure
of pepsin backbone, the major cleavage site of pepsin was quite ex-
pose to the aqueous media and, therefore, accessible to the ligand
to bind at this active site. However, such binding is expected to be
sensitive to the three-dimensional structure of the molybdenum
complex as well. Substitute leucine in the probe structure with gly-
cine did not result in the cleavage of pepsin in the same reaction
conditions.

It is noteworthy in this study that MoO(O2)2(a-leucine) (H2O)
specifically cleaves pepsin under photochemical conditions. The
used wavelengths are far away from the absorption bands of aro-
matic residues on the protein. Therefore, the molybdenum
complex is directly responsible for the photocleavage of pepsin.
The ligand-to-metal charge transfer (LMCT) process could be in-
volved in the cleavage reaction. Transient species, such as radical
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Scheme 2. Possible mechanism for the binding of MoO(O2)2(a-leucine) (H2O) to pepsin. Hydrogen bonding between NH2 in the metal complex with one residue of the
protein may be the initial step in the binding reaction.

Scheme 3. Photocleavage sites of pepsin.
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Fig. 4. Quenching of photocleavage of pepsin by ethanol. Lane 1 contained
molecular weight markers as indicated (kDa). Lanes 2–3 contained pepsin
(15 lM) and MoO(O2)2(a-leucine) (H2O) (2.0 mM). Lane 4 contained pepsin
(15 lM), MoO(O2)2(a-leucine) (H2O) (2.0 mM) and ethanol (0.5 mM). Lane 2 was
the dark control, while samples in lanes 3–4 were irradiated at 340 nm for 20 min.
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intermediates, generated from excitation of the metal complex,
may be involved in the photocleavage reaction.

3.3. Quenching of protein cleavage reaction by ethanol

Exposure of peptides to hydroxyl radical is known to effect
backbone cleavage, although the mechanism is still not fully eluci-
dated. The participation of hydroxyl radical intermediate in the
cleavage is tested in quenching studies with ethanol. Ethanol
quenches hydroxyl radicals at diffusion controlled rates, and reacts
with carbon centered radicals at much slower rates [34]. Ethanol
(0.5 mM) was added to the pepsin/MoO(O2)2(a-leucine) (H2O)
mixture, and the mixture was irradiated at 340 nm for 20 min.
The cleavage of pepsin was quenched by ethanol (lane 4), as shown
in Fig. 4.

4. Conclusion

The data in the current studies clearly show that MoO(O2)2(a-
leucine) (H2O) successfully cleaves pepsin at specific sites under
photochemical conditions. Cleavage specificity is expected to occur
due to specific binding of the metal complex to the selective sites
on the protein. The activation of the metal complex at 340 nm re-
sults in higher yield of protein cleavage compared to the yield ob-
tained at 320 nm. From the above results, hydroxyl radicals may be
responsible for the cleavage of the protein, as indicated by the de-
crease of cleavage yields in the presence of ethanol. Hydroxyl rad-
icals may be generated at or near the cleavage sites. However,
more details in the mechanism for photocleavage of pepsin need
more investigation. Even though the yields are small (�14%), but
the photocleavage reaction has shown high selectivity. Further-
more, this is the first demonstration of protein photocleavage by
a molybdenum complex without the need of adding other chemi-
cal reagents. This study will be useful for the footprinting of metal
binding sites on specific proteins in the future.
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