การผลิตและวิเคราะห์เส้นใยซิลิกาที่ได้จากการปั้นด้วยไฟฟ้าสถิตและการเผาแคลไซน์

เสนอต่อบัณฑิตวิทยาลัย มหาวิทยาลัยศรีนครินทรวิโรฒ เพื่อเป็นส่วนหนึ่งของการศึกษา ตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์ มีนาคม 2557 การผลิตและวิเคราะห์เส้นใยซิลิกาที่ได้จากการปั้นด้วยไฟฟ้าสถิตและการเผาแคลไซน์

เสนอต่อบัณฑิตวิทยาลัย มหาวิทยาลัยศรีนครินทรวิโรฒ เพื่อเป็นส่วนหนึ่งของการศึกษา ตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์ มีนาคม 2557 ลิขสิทธิ์เป็นของมหาวิทยาลัยศรีนครินทรวิโรฒ การผลิตและวิเคราะห์เส้นใยซิลิกาที่ได้จากการปั่นด้วยไฟฟ้าสถิตและการเผาแคลไซน์

เสนอต่อบัณฑิตวิทยาลัย มหาวิทยาลัยศรีนครินทรวิโรฒ เพื่อเป็นส่วนหนึ่งของการศึกษา ตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์ มีนาคม 2557 นัฐยา ประมวลทรัพย์. (2557). การผลิตและวิเคราะห์เส้นใยซิลิกาที่ได้จากการปั่นด้วยไฟฟ้าสถิตและ การเผาแคลไซน์. ปริญญานิพนธ์ วท.ม. (ฟิสิกส์). กรุงเทพฯ: บัณฑิตวิทยาลัย มหาวิทยาลัย ศรีนครินทรวิโรฒ. คณะกรรมการควบคุม: อาจารย์ ดร.ปณิธาน วนากมล.

งานวิจัยนี้เป็นการผลิตและวิเคราะห์เส้นใยซิลิกาที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิตและ การเผาแคลไซน์ โดยในกระบวนการผลิตเส้นใยซิลิกา ได้มีการเตรียมสารละลายด้วยเทคนิคโซลเจล โดยใช้สารตั้งต้น คือ เตตระเอทิลออโทซิลิเคต น้ำกลั่น กรดไฮโดรคลอริก และแอลกอฮอล์ ในอัตราส่วน ้โดยโมล 1 : 2 : 0.01 : 2 สารตั้งต้นถูกปั่นเป็นเส้นใยด้วยกระบวนการปั่นด้วยไฟฟ้าสถิต ในการผลิต เส้นใยซิลิกาโดยกระบวนการปั่นด้วยไฟฟ้าสถิตได้มีการศึกษาปัจจัยต่างๆ ที่มีผลต่อลักษณะทาง กายภาพและขนาดเส้นผ่านศูนย์กลางของเส้นใย ได้แก่ ระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้น ใยและความต่างศักย์ไฟฟ้า ส่วนในการเผาแคลไซน์เส้นใยซิลิกา ได้มีการศึกษาผลของอุณหภูมิที่ใช้ใน การเผาแคลไซน์ต่อลักษณะสัณฐาน พันธะและ หมู่ฟังก์ชัน และความเป็นผลึกของเส้นใยซิลิกา จาก การวิเคราะห์ทางความร้อนด้วยเครื่องเทอร์โมกราวิเมตริก อนาไลซิส (TGA) ทำให้ได้อุณหภูมิที่ใช้ใน การเผาแคลไซน์ คือ 400 600 800 และ 1000 องศาเซลเซียส เส้นใยซิลิกาทั้งก่อนเผาและหลังเผา แคลไซน์วิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด เครื่องฟูเรียร์ทรานส์ฟอร์ม อินฟราเรด สเปกโตรสโคปี (FT IR) และเครื่องเอกซเรย์ดิฟแฟรคชัน (XRD) จากการวิเคราะห์ด้วยกล้องจุลทรรศน์ อิเล็กตรอนแบบส่องกราด พบว่าลักษณะของเส้นใยซิลิกาและขนาดเส้นผ่านศูนย์กลางของเส้นใย ซิลิกาไม่มีแนวโน้มการเปลี่ยนแปลงอย่างชัดเจนกับระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใย และความต่างศักย์ไฟฟ้า จากการวิเคราะห์เส้นใยซิลิกาหลังจากเผาแคลไซน์ด้วย FT IR พบว่ากลุ่มของ สารอินทรีย์และกลุ่มไฮดรอกซิลมีปริมาณลดลงเมื่ออุณหภูมิในการเผาแคลไซน์เพิ่มสูงขึ้น และสำหรับ การวิเคราะห์ด้วย XRD เส้นใยซิลิกาทั้งก่อนเผาและหลังเผาแคลไซน์มีโครงสร้างลักษณะแบบ อสัณฐาน (Amorphous)

FABRICATION AND CHARACTERIZATION OF SILICA FIBERS OBTAINED VIA

ELECTROSPINNING PROCESS AND CALCINATION

Presented in Partial Fulfillment of the Requirements for the

Master of Science Degree in Physics

at Srinakharinwirot University

March 2014

Nuttaya Pramuansub. (2014). Fabrication and Characterization of Silica Fibers Obtained via Electrospinning Process and Calcination. Master thesis, M.S. (Physics). Bangkok: Graduate School, Srinakharinwirot University. Advisor Committee: Dr. Panitarn Wanakamol.

This research involves fabrication and characterization of silica fibers obtained via electrospinning and calcinations processes. In the fabrication process, the silica fibers have been prepared via sol-gel method using precursor solution consisting of tetraethylorthosilicate, distilled water, hydrochloric acid and ethyl alcohol in a molar ratio of 1:2:0.01:2. The precursor solution was then spun into fibers by electrospinning process. In the fiber fabrication via electrospinning process, various factors that affect fiber morphology, including tip - to - collector distance and applied voltage, were examined. In the calcination process, the effect of calcinations temperatures on morphology, bonding, functional groups, and crystallinity of silica fibers were studied. Based on thermogravimetric analysis (TGA), the calcined temperatures of 400 600 800 and 1000 degrees Celsius were chosen. The silica fibers before and after calcinations were analyzed using scanning electron microscopic (SEM), Fourier transform infrared spectroscopy (FT-IR), and x-ray diffraction (XRD). From scanning electron microscope results, the diameter and characteristics of silica fibers did not change significantly with the tip - to - collector distance and the applied voltage. FT-IR analysis of silica fibers after calcination showed that organic functional groups and hydroxyl group decreased when the calcination temperature increased. The XRD analysis showed that the silica fibers both before and after calcination were amorphous.

งานวิจัยนี้ได้รับทุนอุดหนุนการวิจัย

ปริญญานิพนธ์

เรื่อง

การผลิตและวิเคราะห์เส้นใยซิลิกาที่ได้จากการปั่นด้วยไฟฟ้าสถิตและการเผาแคลไซน์

ของ

นัฐยา ประมวลทรัพย์

ได้รับอนุมัติจากบัณฑิตวิทยาลัยให้นับเป็นส่วนหนึ่งของการศึกษาตามหลักสูตร

ปริญญาวิทยาศาสตรมหาบัณฑิต สาขาฟิสิกส์

ของมหาวิทยาลัยศรีนครินทรวิโรฒ

......คณบดีบัณฑิตวิทยาลัย

(รองศาสตราจารย์ ดร.สมชาย สันติวัฒนากุล)

วันที่...... เดือน มีนาคม พ.ศ.2557

อาจารย์ที่ปรึกษาปริญานิพนธ์ คณะกรรมการสอบปากเปล่า

11-2...ประธาน

(ผศ.ดร.รจนา พรประเสริฐสุข)

น วนากมล)

ที่เร็กษา

....กรรมการ

(อาจารย์ ดร.อารียา เอี่ยมบู่)

.....กรรมการ

(อาจารย์ ดร.ปณิธาน วนากมล)

(อาจารย์ ดร.ปณิธาน วนากมล)

ประกาศคุณูปการ

ปริญญานิพนธ์ฉบับนี้ประสบความสำเร็จเป็นอย่างมาก เนื่องด้วยผู้วิจัยได้รับความช่วยเหลือ ความอนุเคราะห์ การดูแลเอาใจใส่และกำลังใจอย่างดียิ่ง จากท่านอาจารย์ ดร. ปณิธาน วนากมล ที่ปรึกษาปริญญานิพนธ์ และประธานกรรมการควบคุมปริญญานิพนธ์ ท่านอาจารย์ได้เสียสละเวลา เพื่อให้คำปรึกษา แนะนำ ในการทำงานวิจัยทุกขั้นตอน และดูแลเอาใจใส่เป็นอย่างดียิ่งต่อผู้วิจัย อีกทั้ง ยังทำให้ผู้วิจัยได้รับประสบการณ์ ในการทำงานและขั้นตอนในการทำงานวิจัยมากยิ่งขึ้น ผู้วิจัยขอ กราบขอบพระคุณเป็นอย่างสูงไว้ ณ ที่นี้

ขอกราบขอบพระคุณท่านอาจารย์ ดร. อารียา เอี่ยมบู่ ที่ให้ความอนุเคราะห์ในการเป็น คณะกรรมการในการสอบปากเปล่าปริญญานิพนธ์ รวมทั้งให้คำแนะนำเพื่อแก้ไขข้อบกพร่องต่างๆ อบรมสั่งสอนและเป็นกำลังใจให้กับผู้วิจัยมาโดยตลอด ทำให้การทำวิจัยและปริญญานิพนธ์ฉบับนี้ ประสบความสำเร็จเป็น อย่างมาก

ขอกราบขอบพระคุณ ผู้ช่วยศาสตราจารย์ ดร. รจนา พรประเสริฐสุข ที่ให้ความอนุเคราะห์ในการเป็น คณะกรรมการในการสอบปากเปล่าปริญญานิพนธ์ รวมทั้งให้คำแนะนำเพื่อแก้ไขข้อบกพร่องต่างๆ ทำให้ ปริญญานิพนธ์ฉบับนี้สมบูรณ์เป็นอย่างดียิ่ง

ขอกราบขอบพระคุณอาจารย์ภาควิชาฟิสิกส์ทุกท่าน ที่ให้การอบรมสั่งสอน ให้ความรู้แก่ ผู้วิจัยตามหลักสูตรฟิสิกส์ รวมทั้งคำแนะนำ ความช่วยเหลือและกำลังใจให้กับผู้วิจัย ทำให้การทำงาน วิจัยประสบความสำเร็จเป็นอย่างดียิ่ง และทำให้ผู้วิจัยรู้ว่าการศึกษาในระดับปริญญาโทนั้น มีคุณค่า และสามารถนำไปพัฒนา และต่อยอดการทำงานต่างๆ ได้เป็นอย่างดี

สุดท้ายขอขอบพระคุณ คุณพ่อ คุณแม่ ที่ให้กำลังใจ ให้การสนับสนุน และอยู่เคียงข้าง ขอขอบคุณ เพื่อนๆ ที่เรียน และร่วมทำงานวิจัยด้วยกัน พี่ และน้องๆ ในภาควิชาฟิสิกส์ ที่คอยให้กำลังใจ คอยช่วยเหลือ และขอขอบคุณทุกคำแนะนำ และทุกความช่วยเหลือ จากทุกๆหน่วยงาน ที่ทำให้งานวิจัยประสบความสำเร็จ ลุล่วงได้ด้วยดี

นัฐยา ประมวลทรัพย์

สารบัญ

บทที่	หน้า
1 บทนำ	
ภูมิหลัง	1
ความมุ่งหมายของงานวิจัย	3
ความสำคัญของงานวิจัย	4
ขอบเขตของงานวิจัย	4
ี้ วิทยา	
2 เอกสารและงานวิจัยที่เกี่ยวข้อง	

กระบวนการปั่นด้วยไฟฟ้าสถิต (Electrospinning)	6
ปฏิกีริยาโซลเจล (Sol-gel reaction)	9
ซิลิคอนไดออกไซด์ (Silicon dioxide) หรือซิลิกา (Silica)	11
กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	
(Scanning Electron Microscopy: SEM)	12
การวิเคราะห์เส้นใยโดยใช้เครื่องเอกซเรย์ดิฟแฟรคชัน	
(X-Ray Diffraction: XRD)	14
การวิเคราะห์เส้นใยด้วยเครื่องฟูเรียร์ทรานส์ฟอร์ม อินฟราเรด สเปกโตรสโคปี	
(Fourier Transform Infrared Spectroscopy : FT-IR)	17
การวิเคราะห์เส้นใยด้วยเครื่องดิฟเฟอเรนเซียล เทอร์มอล อนาไลซิส	
(Thermal Analysis: DTA)	19
การวิเคราะห์เส้นใยด้วยเครื่องเทอร์โมกราวิเมตริก อนาไลซิส	
(Thermogravimetric Analysis: TGA)	21
เอกสารและงานวิจัยที่เกี่ยวข้อง	23

สารบัญ (ต่อ)

าที่	หน้า
3 วิธีดำเนินงานวิจัย	
วัสดุที่ใช้ในการวิจัย	30
อุปกรณ์ที่ใช้ในการวิเคราะห์เส้นใยซิลิกา	31
สถานที่ในการวิจัย	31
ขั้นตอนการวิจัย	
ขั้นตอนการเตรียมสารละลาย	32
ขั้นตอนการปั่นด้วยไฟฟ้าสถิต	33
ขั้นตอนการเผาแคลไซน์เส้นใยซิลิกา	34
ขั้นตอนการวิเคราะห์เส้นใยซิลิกา	34
4 ผลการวิจัย	
การเตรียมสารละลาย	35
ผลการศึกษาปัจจัยในกระบวนการปั่นด้วยไฟฟ้าสถิต ระยะห่างระหว่างปลายเข็ม	
กับแผ่นรองรับเส้นใย และความต่างศักย์ไฟฟ้า	39
ผลการวิเคราะห์ทางความร้อน	45
ผลของอุณหภูมิในการเผาที่มีต่อลักษณะทางกายภาพ องค์ประกอบ	
และโครงสร้างผลึกของเส้นใยซิลิกา	48
5 สรุปและอภิปรายผล	56
รณานุกรม	58

สารบัญ (ต่อ)

บทที่	หน้า
ภาคผนวก	61
ประวัติย่อผู้วิจัย	109
AND	

บัญชีตาราง

ตาราง	หน้า
1 ช่วงคลื่นอินฟราเรด	17
2 ส่วนผสมของสารตั้งต้นทั้ง 2 สูตร	32
3 สารละลายที่เตรียมได้ 22 ชุด	37
4 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ได้จากการเตรียมสารละลาย	
ในอัตราส่วนโดยโมลที่ต่างกัน	38
5 ขนาดเส้นผ่านศูนย์กลางเฉลี่ยของเส้นใยซิลิกาในหน่วยไมโครเมตร (μ m) ที่ทำการปรับ	
ระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใย และความต่างศักย์	42
6 เส้นผ่านศูนย์กลางเฉลี่ยของเส้นใยซิลิกาก่อนและหลังเผาแคลไซน์	
ที่อุณหภูมิต่างๆ	49
7 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาสูตรเก่า	64
8 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาสูตรใหม่	66
9 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 15 kV	
ระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ 15 cm	68
10 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 15 kV	
ระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ 20 cm	70
11 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 15 kV	
ระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ 25 cm	72
12 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 17 kV	
ระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ 15 cm	74
13 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 17 kV	
ระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ 20 cm	76

บัญชีตาราง (ต่อ)

ตาราง	หน้า
14 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 17 kV	
ระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ 25 cm	78
15 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 19 kV	
ระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ 15 cm	80
16 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 19 kV	
ระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ 20 cm	82
17 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 19 kV	
ระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ 25 cm	84
18 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 21 kV	
ระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ 15 cm	86
19 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 21 kV	
ระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ 20 cm	88
20 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 21 kV	
ระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ 25 cm	90
21 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ไม่ได้ผ่านการเผาแคลไซน์	92
22 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่เผาแคลไซน์	
ด้วยอุณหภูมิ 400 องศาเซลเซียส	94
23 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่เผาแคลไซน์	
ด้วยอุณหภูมิ 600 องศาเซลเซียส	96
24 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่เผาแคลไซน์	
ด้วยอุณหภูมิ 800 องศาเซลเซียส	98

บัญชีตาราง (ต่อ)

ตาราง	หน้า
25 ขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่เผาแคลไซน์	
ด้วยอุณหภูมิ 1000 องศาเซลเซียส	100

บัญชีภาพประกอบ

ภาพประกอบ	หน้า
1 ตัวอย่างผลิตภัณฑ์นาโนเทคโนโลยีในตลาด	1
2 ส่วนประกอบพื้นฐานสำหรับกระบวนการปั่นด้วยไฟฟ้าสถิต	7
3 โครงสร้างโมเลกุลของสารประกอบ TEOS	9
4 แบบจำลองโครงสร้างของ SiO ₂	11
5 ส่วนประกอบและหลักการทำงานของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	13
6 ส่วนประกอบของเครื่องวิเคราะห์ธาตุด้วยรังสีเอกซ์	15
7 การเลี้ยวเบนของรังสีเอกซ์	16
8 ผลของการเปลี่ยนแปลงอัตราการเปลี่ยนแปลงของอุณหภูมิ	20
9 เครื่องดิฟเฟอเรนเชียล เทอร์มอล อนาไลซิส	20
10 ตัวอย่างเครื่องเทอร์โมกราวิเมตริก อนาไลซิส	22
11 ตัวอย่างกราฟ TGA ของพอลิเมอร์หลายชนิด	
ที่อุณหภูมิห้องจนถึง 800 องศาเซลเซียส	22
12 แสดงความสัมพันธ์ระหว่างเวลา กับ ความหนืดของสารละลายของตัวอย่าง	26
13 แสดงอุปกรณ์สำหรับกระบวนการปั่นด้วยไฟฟ้าสถิตที่ใช้ในงานวิจัย	33
14 ภาพจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) แสดงลักษณะทางกายภาพ	
ของเส้นใยซิลิกาที่ได้จากการเตรียมสารละลายในอัตราส่วนโดยโมลที่ต่างกัน	38
15 ลักษณะทางกายภาพของเส้นใยซิลิกาที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิต	
ที่ใช้ความต่างศักย์ไฟฟ้า 13 กิโลโวลต์	40
16 ลักษณะทางกายภาพของเส้นใยซิลิกาที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิต	
ที่ใช้ความต่างศักย์ไฟฟ้า 15 กิโลโวลต์	40

บัญชีภาพประกอบ (ต่อ)

ภาพประกอบ	หน้า
17 ลักษณะทางกายภาพของเส้นใยซิลิกาที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิต	
ที่ใช้ความต่างศักย์ไฟฟ้า 17 กิโลโวลต์	41
18 ลักษณะทางกายภาพของเส้นใยซิลิกาที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิต	
ที่ใช้ความต่างศักย์ไฟฟ้า 19 กิโลโวลต์	41
19 ลักษณะทางกายภาพของเส้นใยซิลิกาที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิต	
ที่ใช้ความต่างศักย์ไฟฟ้า 21 กิโลโวลต์	42
20 กราฟแสดงขนาดเส้นผ่านศูนย์กลางเฉลี่ยของเส้นใยซิลิกา ที่ได้จากกระบวนการปั่นด้วยไฟ	ฟ้า
สถิตโดยใช้ระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใยเป็น 15 cm	43
21 แสดงขนาดเส้นผ่านศูนย์กลางเฉลี่ยของเส้นใยซิลิกา ที่ได้จากกระบวนการปั่นด้วยไฟฟ้า	
สถิตโดยใช้ระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใยเป็น 20 cm	43
22 แสดงขนาดเส้นผ่านศูนย์กลางเฉลี่ยของเส้นใยซิลิกา ที่ได้จากกระบวนการปั่นด้วยไฟฟ้า	
สถิตโดยใช้วะยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใยเป็น 25 cm	44
23 กราฟแสดงขนาดเส้นผ่านศูนย์กลางของเส้นใย	
ที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิตที่มีการปรับค่าความต่างศักย์	
และระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใย	44
24 กราฟผลการวิเคราะห์ทางความร้อนด้วยเครื่องเทอร์มอล กราวิเมตริก อนาไลซิส (TGA)	
สำหรับเส้นใยซิลิกาที่ปั่นได้ ด้วยกระบวนการปั่นด้วยไฟฟ้าสถิต	
ที่ใช้ความต่างศักย์ 15 กิโลโวลต์ และระยะห่างระหว่างปลายเข็ม	
กับแผ่นรองรับเส้นใย 15 เซนติเมตร	46

บัญชีภาพประกอบ (ต่อ)

ภาพประกอบ	หน้า
25 กราฟผลการวิเคราะห์ทางความร้อนด้วยเครื่องดิฟเฟอเรนเชียล เทอร์มอล อนาไลซิส (DTA)	
สำหรับเส้นใยซิลิกาที่ปั่นได้ ด้วยกระบวนการปั่นด้วยไฟฟ้าสถิต	
ที่ใช้ความต่างศักย์ 15 กิโลโวลต์ และระยะห่างระหว่างปลายเข็ม	
กับแผ่นรองรับเส้นใย 15 เซนติเมตร	47
26 ลักษณะเส้นใยซิลิกาก่อนเผาแคลไซน์	
ลักษณะเส้นใยซิลิกาที่เผาแคลไซน์ด้วยอุณหภูมิ	
400 600 800 1000 องศาเซลเซียส	49
27 FTIR spectra ของเส้นใยซิลิกา	51
28 XRD pattern ของเส้นใยซิลิกาที่ไม่ได้เผาแคลไซน์	53
29 XRD pattern ของเส้นใยซิลิกาที่เผาแคลไซน์ 400 องศาเซลเซียส	53
30 XRD pattern ของเส้นใยซิลิกาที่เผาแคลไซน์ 600 องศาเซลเซียส	54
31 XRD pattern ของเส้นใยซิลิกาที่เผาแคลไซน์ 800 องศาเซลเซียส	54
32 XRD pattern ของเส้นใยซิลิกาที่เผาแคลไซน์ 1000 องศาเซลเซียส	55
33 XRD pattern ของอะลูมิเนียม 1:2.0 [Amim]Cl/AlCl ₃ at 20 mA/cm ²	107
34 FT-IR spectrum of precipitated SiO_2	108

บทที่ 1 บทนำ

1. ภูมิหลัง

ปัจจุบันนาโนเทคโนโลยีมีบทบาทมากขึ้นในสังคมโลก เนื่องจากเป็นเทคโนโลยีซึ่งเกี่ยวข้องกับ การจัดการ การสร้าง และสังเคราะห์วัสดุในช่วงหนึ่งถึงหลายร้อยนาโนเมตร ส่งผลให้วัสดุหรืออุปกรณ์ ต่างๆมีหน้าที่ใหม่ๆและมีสมบัติที่พิเศษขึ้น ทั้งทางด้านกายภาพ เคมี และชีวภาพ ทำให้มีประโยชน์ต่อ ผู้ใช้สอยและเพิ่มมูลค่าทางเศรษฐกิจได้ ดังภาพประกอบ 1

ภาพประกอบ 1 ตัวอย่างผลิตภัณฑ์นาโนเทคโนโลยีในตลาด

ที่มา: nanotech. (online).

ตัวอย่างหนึ่งของนาโนเทคโนโลยีคือเส้นใยนาโน ด้วยขนาดที่เล็กลงจากเส้นใยแบบดั้งเดิมใน ระดับไมโครเมตร ส่งผลให้เส้นใยนาโนมีสมบัติที่พิเศษมากขึ้น เช่น อัตราส่วนของพื้นผิวต่อปริมาตรที่เพิ่ม มากขึ้น ความสามารถในการยืดหยุ่นที่ดี ขนาดของรูพรุนที่เล็ก และคุณสมบัติเชิงกลที่ดี เป็นต้น ทั้งนี้การ ใช้งานขึ้นอยู่กับวัสดุตั้งต้นที่นำมาผลิตเป็นเส้นใย กระบวนการหนึ่งที่นิยมใช้ในการผลิตเส้นใยนาโนคือ กระบวนการปั่นด้วยไฟฟ้าสถิตเนื่องจากเป็นวิธีการที่ง่ายไม่ชับซ้อน ในระบบพื้นฐานมีส่วนประกอบหลักที่ สำคัญเพียง 3 ส่วน คือ แหล่งจ่ายไฟฟ้าความต่างศักย์สูง (High voltage power supply) หลอดบรรจุ สารละลายที่ติดเข็มโลหะ และแผ่นรองรับเส้นใยที่เป็นโลหะ โดยส่วนใหญ่นิยมใช้พอลิเมอร์เป็นวัสดุตั้งต้น ในการผลิตเส้นใยนาโน เนื่องจากเตรียมในรูปของเหลวหนึดได้ง่าย เส้นใย พอลิเมอร์นำไปประยุกต์ใช้งานได้ อย่างหลากหลาย ทั้งในด้านการแพทย์ การทหาร และ ด้านสิ่งแวดล้อม เป็นต้น (Huang; et al. 2003: 2223)

นอกเหนือจากพอลิเมอร์แล้ว วัสดุประเภทอื่นๆ เช่น โลหะ และเซรามิกก็ได้รับความสนใจ ในการ นำมาเป็นสารตั้งต้นในการผลิตเส้นใยนาโน หากแต่โลหะและเซรามิกเตรียมในรูปของเหลวหนืดที่ อุณหภูมิห้องได้ยากกว่า จึงเป็นงานวิจัยที่ยังไม่แพร่หลายและมีความท้าทายกว่าการผลิตเส้นใยพอลิเมอร์ เซรามิกประเภทหนึ่งที่น่าสนใจคือซิลิคอนไดออกไซด์ (SiO₂) หรือซิลิกา ซึ่งเป็นวัสดุที่มีความแข็งแรง มีความเป็นรูพรุนสูง ไม่ว่องไวต่อการเกิดปฏิกิริยาและราคาถูก (Thuambangphai and Varanusupakul. 2009: 1) ซิลิกาสามารถนำไปพัฒนาใช้ในผลิตภัณฑ์อุตสาหกรรมต่างๆมากมาย เช่น ใช้เป็นสารตัวเติมใน ผลิตภัณฑ์ยาง ใช้เป็นสารตัวเติมในเครื่องสำอาง เป็นสารเพิ่มความแข็งแรง ในด้านทันตกรรม ใช้เป็นวัสดุ เริ่มต้นในการผลิตกระจก รวมไปถึงอุตสาหกรรมด้านอิเล็กทรอนิกส์ เป็นต้น โดยมากแล้วเส้นใยซิลิกาที่ นำมาประยุกต์ใช้เป็นเส้นใยในระดับไมโครเมตร การผลิตซิลิกาเป็นเส้นใยนาโนซึ่งมีขนาดเล็กลงกว่าแบบ ดั้งเดิมจึงเป็นการปรับปรุงลักษณะวัสดุที่อาจนำไปใช้ประโยชน์ได้ดีขึ้น

ในช่วงสิบปีที่ผ่านมาได้มีการศึกษาการผลิตเส้นใยซิลิกาโดยกระบวนการปั่นด้วยไฟฟ้าสถิตมา บ้างแล้ว ซึ่งการผลิตเส้นใยซิลิกานั้นมีความยุ่งยากในการเตรียมสารตั้งต้นกว่าการผลิตเส้นใยพอลิเมอร์ ในงานวิจัยส่วนใหญ่จึงนิยมผสมพอลิเมอร์เพื่อให้ง่ายต่อการเตรียมสารตั้งต้นที่มีความหนืด เช่น เชาและ คนอื่นๆ (Shao; et al. 2003: 1579-1584) ได้ผลิตเส้นใยซิลิกาโดยใช้เตตระเอทิลออโทซิลิเกต (Tetraethyl orthosilicate: TEOS) และพอลิไวนิลแอลกอฮอล์เป็นสารตั้งต้น พบว่าได้เส้นใยที่มีขนาดเส้นผ่าน ศูนย์กลาง 200 - 600 นาโนเมตร ดิงและคนอื่นๆ (Ding; et al. 2009: 34-36) ผลิตเส้นใยผสมระหว่าง ในลอน 6 (Nylon 6) และอนุภาคนาโนซิลิคอนไดออกไซด์ (SiO₂ nanoparticles) เป็นต้น ถึงแม้การผลิต เส้นใยซิลิกาที่ผสมพอลิเมอร์จะง่ายต่อกระบวนการผลิต เส้นใยที่ได้ย่อมมีสัดส่วนซิลิกาอยู่น้อยเนื่องจาก การผสมพอลิเมอร์ลงไป นอกจากนี้หากนำเส้นใยผสมไปเผาแคลไซน์ (Calcination) ตามกระบวนการผลิต เซรามิก ส่วนที่เป็นพอลิเมอร์จะสลายตัวเนื่องจากความร้อน ทำให้ส่วนซิลิกาที่เหลือเป็นเส้นใยขรุขระหรือ อาจไม่คงความเป็นเส้นใยอยู่เลย หากมีสัดส่วนที่เป็นพอลิเมอร์อยู่มาก ด้วยเหตุนี้จึงมีความพยายามที่จะ ผลิตเส้นใยซิลิกาที่ไม่ผสมพอลิเมอร์เพื่อให้ได้เส้นใยซิลิกาที่สมบูรณ์ขึ้น ตัวอย่างเช่น ซอยและคนอื่นๆ (Choi; et al. 2003: 891-893) ได้ผลิตเส้นใยซิลิกาโดยใช้เตตระเอทิลออโทซิลิเกต เอทิลแอลกอฮอล์ น้ำ กลั่น และกรดไฮโดรคลอริค ในอัตราส่วนโดยโมลเท่ากับ 1 : 2 : 2 : 0.01 พบว่าเส้นใยที่ได้มีขนาดเส้นผ่าน ศูนย์กลาง 200-600 นาโนเมตร อย่างไรก็ตามยังไม่มีรายงานการศึกษาการเผาแคลไซน์ของเส้นใยซิลิกา จากการปั่นด้วยไฟฟ้าสถิตโดยไม่ผสมพอลิเมอร์

งานวิจัยนี้ จึงมีความมุ่งหมายที่จะผลิตเส้นใยซิลิกาด้วยกระบวนการปั่นด้วยไฟฟ้าสถิต โดยใช้ TEOS เป็นสารตั้งต้น พร้อมทั้งศึกษาผลของอุณหภูมิการเผาแคลไซน์ที่มีต่อโครงสร้างและลักษณะของ เส้นใย โดยทำการศึกษาวิเคราะห์เส้นใยซิลิกาดังนี้ ลักษณะของเส้นใย ขนาดของเส้นใย โครงสร้างผลึก พันธะและหมู่ฟังก์ชัน และการเปลี่ยนแปลงทางความร้อน เพื่อที่จะเป็นประโยชน์ในการศึกษาเพิ่มเติมหรือ นำไปประยุกต์ใช้งานด้านต่างๆ ต่อไป

2. ความมุ่งหมายของงานวิจัย

ในงานวิจัยครั้งนี้ผู้วิจัยมีความมุ่งหมาย ดังนี้

1. ผลิตเส้นใยซิลิกาด้วยกระบวนการปั้นด้วยไฟฟ้าสถิต

2. ศึกษาผลของความต่างศักย์และระยะห่างระหว่างปลายเข็มกับตัวรองรับในการผลิตเส้นใย ซิลิกาที่เตรียมด้วยกระบวนการปั่นด้วยไฟฟ้าสถิต

......

 สึกษาผลของอุณหภูมิในการเผาแคลไซน์เส้นใยซิลิกาที่มีต่อหมู่ฟังก์ชันและพันธะในเส้นใย ซิลิกา ลักษณะและโครงสร้างผลึกของเส้นใยซิลิกา

3. ความสำคัญของงานวิจัย

ทำให้สามารถผลิตเส้นใยซิลิกาที่มีขนาดเล็กในระดับต่ำกว่า 500 นาโนเมตรซึ่งทำให้มีอัตราส่วน ระหว่างพื้นผิวต่อปริมาตรสูง ทราบถึงผลของความต่างศักย์และระยะห่างระหว่างปลายเข็มโลหะกับตัว รองรับที่มีต่อขนาดและลักษณะของเส้นใย และทราบถึงผลของอุณหภูมิในการเผาแคลไซน์เส้นใยซิลิกาที่มี ต่อหมู่ฟังก์ชันและพันธะในเส้นใยซิลิกา รวมถึงสมบัติทางความร้อนของเส้นใยซิลิกา

4. ขอบเขตของงานวิจัย

ในงานวิจัยครั้งนี้ผู้วิจัยได้ตั้งขอบเขตของงานวิจัยไว้ดังนี้

 1. ใช้เทคนิคการปั่นด้วยไฟฟ้าสถิต ในการผลิตเส้นใยซิลิการะดับต่ำกว่า 500 นาโนเมตร โดยใช้ สารตั้งต้นที่เตรียมจาก TEOS

2. เผาแคลไซน์เส้นใยซิลิกา

3. วิเคราะห์เส้นใยซิลิกาด้วยเครื่องมือต่างๆ ดังนี้

- กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscopy: SEM เพื่อศึกษาสัณฐานและรายละเอียดของลักษณะพื้นผิวของเส้นใย

- ฟูเรียร์ทรานส์ฟอร์ม อินฟราเรด สเปกโตรสโคปี (Fourier Transform Infrared

Spectroscopy: FT-IR) เพื่อวิเคราะห์หาพันธะและหมู่ฟังก์ชันในเส้นใยซิลิกา

- เครื่องเอกซเรย์ดิฟแฟรคชัน (X-Ray Diffraction: XRD) เพื่อศึกษาเกี่ยวกับโครงสร้าง

ของผลึก

- เครื่องเทอร์โมกราวิเมตริก อนาไลซิส (Thermogravimetric Analysis: TGA) เพื่อ

วิเคราะห์ความเสถียรทางความร้อนของวัสดุ

- เครื่องดิฟเฟอเรนเซียล เทอร์มอล อนาไลซิส (Differential Thermal Analysis: DTA) เพื่อศึกษาการเปลี่ยนแปลงทางกายภาพ และการเปลี่ยนแปลงทางเคมีของตัวอย่างเมื่อได้รับความร้อน

5. ประโยชน์ที่คาดว่าจะได้รับจากงานวิจัย

งานวิจัยนี้ทำให้ได้องค์ความรู้เกี่ยวกับการผลิตเส้นใยซิลิกาโดยกระบวนการปั่นด้วยไฟฟ้าสถิต และทำให้ทราบถึงปัจจัยต่างๆ ที่มีผลต่อลักษณะเส้นใยซิลิกา ทั้งในด้านขนาดเส้นผ่านศูนย์กลางโครงสร้าง ผลึกพันธะและหมู่ฟังก์ชัน โดยความรู้ที่ได้นี้จะสามารถนำไปประยุกต์ใช้ในการผลิตเส้นใยซิลิกาที่มี ลักษณะเหมาะสมตามความต้องการ เช่น ใช้ในการเสริมแรงวัสดุคอมพอสิต การใช้เป็นโครงสร้างที่ช่วย เพิ่มพื้นที่ผิวสำหรับตัวเร่งปฏิกิริยาต่างๆ

บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง

ในงานวิจัยครั้งนี้ผู้วิจัยได้ศึกษาเอกสารและงานวิจัยที่เกี่ยวข้อง โดยเสนอตามหัวข้อต่อไปนี้

1. กระบวนการปั้นด้วยไฟฟ้าสถิต (Electrospinning)

2. ปฏิกิริยาโซลเจล (Sol-gel reaction)

3. ซิลิคอนไดออกไซด์ (Silicon dioxide) หรือซิลิกา (Silica)

4. เครื่องมือที่ใช้ในการวิเคราะห์เส้นใย

4.1 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscopy: SEM)

4.2 เครื่องเอกซเรย์ดิฟแฟรคชัน (X-Ray Diffraction: XRD)

4.3 เครื่องฟูเรียร์ทรานส์ฟอร์ม อินฟราเรด สเปกโตรสโคปี

(Fourier Transform Infrared Spectroscopy: FT-IR)

4.4 เครื่องดิฟเฟอเรนเซียล เทอร์มอล อนาไลซิส (Differential Thermal Analysis: DTA)

.

0

4.5 เครื่องเทอร์โมกราวิเมตริก อนาไลซิส (Thermogravimetric Analysis: TGA)

5. เอกสารและงานวิจัยที่เกี่ยวข้อง

1. กระบวนการปั้นด้วยไฟฟ้าสถิต (Electrospinning)

เทคนิคการผลิตเส้นใยขนาดเล็กโดยกระบวนการปั่นด้วยไฟฟ้าสถิต สามารถผลิตเส้นใยที่มีขนาด เส้นผ่านศูนย์กลางตั้งแต่ 10 นาโนเมตร ถึงมากกว่า 1 ไมโครเมตร โดยอาศัยแรงทางไฟฟ้าที่เกิดจาก ศักย์ไฟฟ้ากำลังสูง ในการทำให้ของเหลวพุ่งตัวออกเป็นเส้น และเมื่อของเหลวแห้งหรือแข็งตัวจะได้เส้นใย ขนาดเล็กออกมา สำหรับระบบพื้นฐานมีส่วนประกอบหลักที่สำคัญเพียง 3 ส่วน คือ แหล่งจ่ายไฟฟ้าความ ต่างศักย์สูง (High voltage power supply) หลอดบรรจุสารละลายที่ติดเข็มโลหะ และแผ่นรองรับเส้นใยที่ เป็นโลหะ (Metal collector) ดังภาพประกอบ 2 จัดเป็นระบบที่ไม่มีความซับซ้อน มีค่าใช้จ่ายน้อยและใช้ งานได้สะดวก ทั้งนี้ในระบบที่พัฒนาให้ดีขึ้นสามารถเพิ่มอุปกรณ์สำหรับควบคุมการไหลของสารละลาย (Syringe pump) ทำให้การผลิตเส้นใยมีประสิทธิภาพสูงขึ้น กล่าวคือ สามารถควบคุมขนาดและปริมาณ การเกิดเส้นใยได้ต่อเนื่องมากยิ่งขึ้น (Huang; et al. 2003: 2225)

ภาพประกอบ 2 ส่วนประกอบพื้นฐานสำหรับกระบวนการปั่นด้วยไฟฟ้าสถิต

ที่มา: J.Im; J. Jang; & Y. Lee. (2009). Synthesis and Characterization of Mesoporous Electrospun Carbon Fibers Derived from Silica Template. Journal of Industrial and Engineering Chemistry. (online).

หลักการพื้นฐาน

ในการผลิตเส้นใยโดยกระบวนการปั่นด้วยไฟฟ้าสถิต โดยปกติจะต่อขั้วไฟฟ้าขั้วบวกเข้าที่ปลาย เข็มโลหะและต่อขั้วไฟฟ้าขั้วลบกับแผ่นรองรับเส้นใยที่เป็นโลหะในตอนต้นเมื่อยังไม่ได้ให้ไฟฟ้าความ ต่างศักย์สูงแก่ระบบ สารละลายซึ่งมีลักษณะเป็นของเหลวหนืดจะรวมตัวกันมีลักษณะรูปร่างเป็นครึ่งทรง กลมที่บริเวณปลายเข็มโลหะอันเนื่องมาจากความตึงผิว (Surface tension) แรงระหว่างพันธะใน สารละลายและแรงตึงผิวมีผลให้สารละลายไม่ไหลลงมาตามแรงโน้มถ่วงของโลก แต่เมื่อให้ไฟฟ้าความ ต่างศักย์สูงแก่ระบบ ส่วนปลายเข็มโลหะจะถูกเหนี่ยวนำให้มีประจุเป็นบวก และแผ่นรองรับเส้นใยมีประจุ เป็นลบ ประจุบวกบริเวณปลายของเข็มโลหะดึงประจุลบภายในสารละลายเข้าใกล้บริเวณเข็มโลหะทำให้ หยดสารละลายที่ปลายเข็มมีประจุเป็นบวกโดยเฉพาะที่ผิว ประจุบวกที่ผิวของหยดสารละลายออกแรง ผลักทางไฟฟ้าสถิต (Electrostatic repulsion) ในทิศทางตรงข้ามกับแรงตึงผิว ดังนั้นถ้าความต่างศักย์ ไฟฟ้ามีค่ามากพอที่จะทำให้เกิดแรงทางไฟฟ้าสถิตมากกว่าแรงตึงผิว จะส่งผลให้รูปร่างครึ่งทรงกลมของ สารละลายที่บริเวณปลายเข็มยืดออกเป็นรูปทรงกรวย ที่เรียกว่ากรวยเทเลอร์ (Taylor cone) และเมื่อเพิ่ม ความต่างศักย์ไฟฟ้าให้แก่ระบบมากขึ้นจะเกิดแรงขับดันให้สารละลายพุ่งออกมาเป็นลำ (Solution jet) ลำของสารละลายที่พุ่งออกมาจะมีประจุเป็นบวก พุ่งเข้าหาแผ่นรองรับเส้นใยซึ่งมีประจุเป็นลบ ในขณะ เดียวกันประจุภายในลำสารละลายจะผลักกันทำให้เกิดการยืดและสะบัดตัวของเส้นใย ความไม่เสถียรทำ ให้ลำของสารละลายเคลื่อนตัวในลักษณะที่ซับซ้อน การยืดตัวออกของลำสารละลายนำมาซึ่งเส้นใยที่มี ขนาดเส้นผ่านศูนย์กลางที่เล็กลง โดยมีลักษณะเป็นแบบเส้นใยที่ไม่ได้ถักทอ (Non-woven) ซ้อนทับกัน (Rutledge, Fridrikh. 2007: 2)

เส้นใยที่ได้จากการบั่นด้วยไฟฟ้าสถิตจะกองรวมกันอย่างไม่เป็นระเบียบบนแผ่นรองรับเส้นใย เส้นใยจะมีขนาดของเส้นผ่านศูนย์กลางและสัณฐานของเส้นใยที่แตกต่างกัน แล้วแต่เงื่อนไขในการผลิต เส้นใยบางครั้งเส้นใยที่ได้มีรูปร่างคล้ายลูกบัดบางครั้งเกิดเป็นเส้นต่อเนื่องขึ้นอยู่กับบัจจัยต่างๆ ได้แก่ ตัวแปรของระบบ สมบัติของสารละลายและสภาวะแวดล้อม ตัวแปรของระบบเป็นปัจจัยที่เราสามารถ ควบคุมได้ เช่น ความต่างศักย์ ระยะห่างระหว่างปลายเข็มโลหะกับแผ่นรองรับเส้นใย ขนาดเส้นผ่าน ศูนย์กลางของหัวเข็ม แรงดันภายในหลอดบรรจุสารละลาย ความหนืดของสารละลายเป็นสมบัติของ สารละลายที่ส่งผลกระทบต่อขนาดและรูปร่างของเส้นใย เช่นกัน ความหนืดของสารละลายเป็นสมบัติของ สุดลงและได้เส้นใยที่มีความสม่ำเสมอมากขึ้น สภาวะแวดล้อมเป็นค่าเฉพาะในบริเวณโดยรอบที่ทำการ ผลิตเส้นใย เช่น อุณหภูมิ ความขึ้น และความเร็วลม (Huang; et al. 2003: 2231)

2. ปฏิกิริยาโซล-เจล (Sol-gel reaction)

ในปัจจุบันเทคนิคโซลเจล เป็นอีกกระบวนการหนึ่งที่มีการนำมาใช้ประโยชน์อย่างกว้างขว้าง เช่น การเคลือบผิวของวัสดุเพื่อป้องกันไม่ให้วัสดุที่ถูกเคลือบเกิดปฏิกิริยา ใช้ในการเคลือบเครื่องปฏิกรณ์ เพื่อควบคุมความเย็นที่เกิดภายในเครื่องปฏิกรณ์ ใช้ในการสังเคราะห์เซรามิก ใช้ป้องกันการออกซิเดชัน ของแร่ และใช้เป็นฉนวนป้องกันความร้อน เป็นต้น ซึ่งสมบัติของสารตั้งต้นในปฏิกิริยาโชลเจล ควรมี ลักษณะเป็นโมเลกุลซึ่งสามารถเป็นได้ทั้งสารประกอบอินทรีย์ หรืออนินทรีย์ ขึ้นอยู่กับงานที่จะนำไป ประยุกต์ใช้ เตตระเอทิลออโทซิลิเกต (Tetraethyl orthosilicate: TEOS) Si(OC₂H₅)₄ เป็นหนึ่งในสาร ประกอบที่นิยมนำมาใช้ในการสังเคราะห์เจล มีลักษณะโมเลกุลของ TEOS แสดงให้เห็นดังภาพประกอบ 3 เนื่องจากโมเลกุล TEOS สามารถทำปฏิกิริยากับน้ำหรือไอโดรไลซิส (Hydrolysis) ได้อย่างรวดเร็ว ซึ่ง ปฏิกิริยานี้จะเกิดได้สมบูรณ์ขึ้นอยู่กับปริมาณน้ำและตัวเร่งปฏิกิริยาที่ใช้ นอกจากนี้โมเลกุล TEOS ที่ทำ ปฏิกิริยากับน้ำแล้ว 2 โมเลกุล สามารถเชื่อมโยงกันได้ด้วยปฏิกิริยาควบแน่น (Condensation) ซึ่งจะทำ ให้เกิดโมเลกุลเล็กๆ เช่น น้ำ หรือ แอลกอฮอล์ (ไซยยันต์ ไซยยะ; และภาวิณี สายอุดม. 2548: 1-2)

ภาพประกอบ 3 แสดงโครงสร้างโมเลกุลของสารประกอบ TEOS

ที่มา: timedomain cvd, Inc. (online).

โดยทั่วไปกระบวนการโซลเจล เป็นกระบวนการเปลี่ยนสถานะจากของเหลว ที่เรียกว่า "โซล" (Sol) ซึ่งส่วนมากอยู่ในรูปของสารแขวนลอยที่มีขนาดอนุภาคประมาณ 0.1 - 1 ไมโครเมตร ให้กลายเป็น ของแข็ง ที่เรียกว่า "เจล" (Gel) ปฏิกิริยาที่สำคัญในกระบวนการโซลเจลมี 2 ปฏิกิริยา คือ ปฏิกิริยากับน้ำ (Hydrolysis) และปฏิกิริยาควบแน่น (Condensation) ปัจจัยสำคัญที่มีผลต่ออัตราการเกิดปฏิกิริยาโซล เจล คือค่าความเป็นกรด-เบสของตัวเร่งปฏิกิริยา อัตราส่วนโดยโมลของน้ำและสารตั้งต้น อุณหภูมิในการ เกิดปฏิกิริยา ซนิดของตัวทำละลาย และระยะเวลาในการเกิดปฏิกิริยา (เบญจวรรณ ชัยเชื้อ; ภัทรพรรณ ประศาสน์สารกิจ; และ ศิริลักษณ์ พุ่มประดับ. 2551: 590)

ตัวอย่างแสดงการเกิดปฏิกิริยาโซลเจลของ TEOS เพียง 1 ขา จากโครงสร้างโมเลกุลของ TEOS ดังภาพประกอบ 3 โดย R คือ C₂H₅ (เอทิล) แสดงดังปฏิกิริยา ต่อไปนี้

A.

$Si - O - R + H_2O$	\rightarrow	Si – OH + R – OH	(1)
Si – OH + HO – Si	\rightarrow	$Si - O - Si + H_2O$	(2)
Si – O – R + HO – Si	\rightleftharpoons	Si – O – Si + R – OH	(3)

โดยที่สมการ (1) เป็นปฏิกิริยากับน้ำ สมการ (2) และ (3) เป็นปฏิกิริยาควบแน่น และแสดงให้เห็น ว่ามีการเชื่อมโยงซิลิคอนเข้าด้วยกัน เพราะ TEOS 1 โมเลกุลจะมีซิลิคอนแค่ 1 ตัว

ปี พ.ศ. 2550 (ค.ศ. 2007) กิตติพงศ์ ยิ่งธเนศ และชัชวาล สุขมั่น (Kittiphong Yingtanes & Chachawal sukmun. 2007: 1-2) ศึกษาการสังเคราะห์อนุภาคซิลิกาด้วยเทคนิคโซลเจล โดยผู้วิจัยใช้ สารตั้งต้น ดังนี้ TEOS น้ำ (H₂O) เอทิลแอลกอฮอล์ (C₂H₆O) และกรดไฮโดรคลอริค (HCI) โดยใช้อัตราส่วน ต่างๆกัน 7 อัตราส่วน พบว่าอัตราส่วนโดยโมล TEOS : H₂O : C₂H₆O เท่ากับ 1 : 2 : 1 และใช้อุณหภูมิใน การเผาแคลไซน์ที่ 750 องศาเซลเซียส จะสังเกตเห็นอนุภาคซิลิกาชัดเจนเมื่อวิเคราะห์ด้วยเครื่องเอกซเรย์ ดิฟแฟรคชันพบว่าอนุภาคซิลิกาที่ทำขึ้นด้วยอัตราส่วนปริมาตรนี้มีระดับความเป็นผลึกสูงสุด

3. ซิลิคอนไดออกไซด์ (Silicon dioxide) หรือซิลิกา (Silica)

ซิลิกา หรือ ซิลิคอนไดออกไซด์ (SiO₂) เป็นสารประกอบที่เกิดจากการรวมตัวระหว่างซิลิคอน และออกซิเจน เป็นผลึกไม่มีสี หรือผลึกสีขาว ไม่มีกลิ่น ไม่มีรส มีความถ่วงจำเพาะในช่วง 2.2-2.6 จุด หลอมเหลว 1170 องศาเซลเซียส ขึ้นกับรูปแบบของซิลิกา ไม่ละลายน้ำหรือละลายน้ำได้เล็กน้อย ไม่ ละลายในกรดทุกชนิด ยกเว้นกรดไฮโดรฟลูออลิก

ชิลิกาเป็นสารประกอบที่ประกอบด้วยธาตุ 2 ธาตุ คือ ซิลิคอน (Si) และออกซิเจน (O) ลักษณะที่ พบอาจอยู่ในรูปซิลิเกต โครงสร้างพื้นฐานของซิลิกาและซิลิเกต จะมีการจัดเรียงตัวแบบเตตระฮีดรอล (Tetrahedral) ซิลิกามีโครงสร้างเป็นผลึกร่างตาข่าย เชื่อมต่อกันด้วยพันธะโควาเลนต์ (Covalent bond) ดังภาพประกอบ 4 อะตอมของซิลิคอนจัดเรียงตัวเหมือนกับคาร์บอนในผลึกเพชร แต่มีออกซิเจนคั่นอยู่ ระหว่างอะตอมของซิลิคอนแต่ละคู่ ซิลิกาใช้เป็นวัสดุเบื้องต้นในการผลิตกระจก แก้วน้ำและขวดน้ำ สายใยแก้วที่ใช้ในการโทรคมนาคมก็เป็นผลิตผลจากซิลิกาเช่นเดียวกัน และยังใช้เป็นวัตถุดิบแรกเริ่มใน ผลิตภัณฑ์จำพวกเซรามิก เช่น เครื่องบั้นดินเผา เครื่องหิน เครื่องลายคราม และการผลิตพาร์ตแลนด์ ซีเมนต์

ภาพประกอบ 4 แบบจำลองโครงสร้างของ SiO₂

ที่มา: บทเรียนเคมีออนไลน์. ออนไลน์

ที่ความดันบรรยากาศผลึกของซิลิกา (Crystalline silica) มี 3 รูปแบบ คือ ควอตซ์ (Quartz) เสถียรที่ อุณหภูมิต่ำกว่า 870 องศาเซลเซียส ไตรดีไมต์ (Tridymite) เสถียรที่อุณหภูมิประมาณ 870-1470 องศา เซลเซียส และคริสโตบาไลต์ (Cristobalite) เสถียรที่อุณหภูมิ 1470 ถึงจุดหลอมเหลวที่ประมาณ 1723 องศาเซลเซียส ซิลิกามีสมบัติทางเคมีที่ค่อนข้างเสถียรที่อุณหภูมิปกติ และไม่ทำปฏิกิริยาต่อสารเคมีหลาย ชนิดแต่อย่างไรก็ตามไม่ได้หมายความว่าซิลิกาจะไม่ทำปฏิกิริยาใดๆเลยเพราะซิลิกาสามารถเปลี่ยน รูปแบบได้ และอุณหภูมิสูงความว่องไวในปฏิกิริยาของซิลิกาจะขึ้นอยู่กับรูปแบบของซิลิกา การเตรียมและ

สภาวะของซิลิกาชนิดอสัณฐาน (Amorphous Silica) จะว่องไวมากกว่าผลึกซิลิกา (Crystalline silica) ที่ เป็นเช่นนั้นเพราะอสัณฐานซิลิกามีพื้นที่ผิวมาก (จันทิรา ชัยมงคล. 2525: 269-271; และชัยวัฒน์ เจน วาณิชย์. 2525: 539-546)

4. เครื่องมือที่ใช้ในการวิเคราะห์เส้นใย

4.1 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscopy: SEM)

กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด เป็นกล้องจุลทรรศน์อิเล็กตรอนที่มีกำลังขยายประมาณ 10 เท่า จนถึง 500,000 เท่า การสร้างภาพทำได้โดยการตรวจวัดอิเล็กตรอนที่สะท้อนจาก พื้นผิวหน้าของตัวอย่างที่ทำการ วิเคราะห์ ซึ่งภาพที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดนี้ จะเป็นภาพลักษณะ 3 มิติ ดังนั้นเทคนิคนี้จึง ถูกนำมาใช้ในการศึกษาสัณฐานและรายละเอียดของลักษณะพื้นผิวของตัวอย่าง เช่น ลักษณะพื้นผิวด้านนอกของ เนื้อเยื่อและเซลล์ หน้าตัดของโลหะและวัสดุ เป็นต้น

หลักการทำงานของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด

หลักการทำงานของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด แสดงดังภาพประกอบ 5 แหล่งกำเนิดอิเล็กตรอน ที่เรียกว่าปืนอิเล็กตรอน (Electron gun) สแกนลงบนตัวอย่างที่บรรจุอยู่ภายใน ห้องสุญญากาศ โดยลำอิเล็กตรอนนี้เกิดขึ้นจากการทำให้แคโทดทังสเตนร้อนจนสามารถปล่อยอิเล็กตรอน ให้หลุดออกมาจากนั้นอิเล็กตรอนถูกเร่งด้วยศักย์ไฟฟ้าสูง (1,000 ถึง 3,000 อิเล็กตรอนโวลต์ หรือ มากกว่า) และจะถูกปรับขนาดลำอิเล็กตรอนให้มีขนาดเล็กลงเพื่อเป็นการเพิ่มความเข้มของลำอิเล็กตรอน โดยชุดคอนเดนเซอร์เลนส์ (Condenser lens)

ภาพประกอบ 5 ส่วนประกอบและหลักการทำงานของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด

0

ที่มา: ฟิสิกส์ราชมงคล. ออนไลน์.

จากนั้นเลนส์วัตถุ (Objective lens) จะทำหน้าที่โฟกัสลำอิเล็กตรอน (Electron beam) ให้ไปตก บนผิวของตัวอย่าง โดยมีสแกนคอยล์ควบคุมการส่องกราดลำอิเล็กตรอน ทำหน้าที่ควบคุมทิศทางการ เคลื่อนที่ของลำอิเล็กตรอนบนพื้นผิวตัวอย่าง ซึ่งลำอิเล็กตรอนนี้เรียกว่า อิเล็กตรอนปฐมภูมิ อิเล็กตรอน ปฐมภูมิเหล่านี้จะไปตกกระทบที่บริเวณพื้นผิวหน้าของตัวอย่าง โดยจะทำให้เกิดอันตรกริยา (Interaction) ระหว่างอิเล็กตรอนปฐมภูมิกับอะตอมธาตุในตัวอย่าง และเกิดการถ่ายโอนพลังงานที่ชั้นความลึกจาก พื้นผิวที่ระดับต่างๆทำให้เกิดการปลดปล่อยสัญญาณอิเล็กตรอน (Electron signal) ชนิดต่างๆออกมา โดย สัญญาณเหล่านี้จะถูกเปลี่ยนเป็นสัญญาณภาพมาปรากฏบนจอรับภาพ โดยสัญญาณอิเล็กตรอนใช้ ประโยชน์ในการศึกษาลักษณะผิวของตัวอย่างและวิเคราะห์ธาตุที่มีในตัวอย่างได้ตามลักษณะสัญญาณ ภาพที่ได้จากสัญญาณอิเล็กตรอนชนิดต่างๆที่เกิด คือ

 สัญญาณภาพจากอิเล็กตรอนทุติยภูมิ (Secondary Electron Image: SEI) หรือเป็นกลุ่ม อิเล็กตรอนพลังงานต่ำ 3 ถึง 5 อิเล็กตรอนโวลต์ เกิดที่พื้นผิวระดับไม่ลึก (ไม่เกิน 10 นาโนเมตร) ให้ข้อมูล ลักษณะพื้นผิว

 สัญญาณภาพจากอิเล็กตรอนกระเจิงกลับ (Backscattered Electron Image: BEI) เป็นกลุ่ม อิเล็กตรอนที่สูญเสียพลังงานให้กับอะตอมในตัวอย่างเพียงบางส่วนและกระเจิงกลับออกมา ซึ่งมีพลังงาน สูงกว่าอิเล็กตรอนทุติยภูมิ เกิดที่พื้นผิวระดับลึกกว่า 10 นาโนเมตร ให้ข้อมูลเกี่ยวกับส่วนประกอบทางเคมี และลักษณะความสูงต่ำของพื้นผิว

 สัญญาณภาพจากรังสีเอกซ์ (X-Ray Image: XRI) ชนิดที่เป็นรังสีเอกซ์เฉพาะตัวเป็นคลื่น แม่เหล็กไฟฟ้าที่เกิดจากอิเล็กตรอนในระดับชั้นโคจรต่างๆ (K, L, M, ...) ถูกกระตุ้นหรือได้รับพลังงานมาก พอจนหลุดออกจากวงโคจร จึงสามารถนำมาใช้ประโยชน์ในการวิเคราะห์ธาตุตามระดับพลังงานของ ตัวอย่างได้ทั้งเชิงปริมาณและคุณภาพ (แม้น อมรสิทธิ์. 2534; วีระศักดิ์ อุดมกิจเดชา; และคนอื่นๆ. 2543: 289-304)

4.2 การวิเคราะห์เส้นใยโดยใช้เครื่องเอกซเรย์ดิฟแฟรคชัน (X-Ray Diffraction: XRD) เครื่องเอกซเรย์ดิฟแฟรคชัน (X-Ray Diffraction: XRD) ดังภาพประกอบ 6 เป็นเครื่องมือวิเคราะห์ วัสดุพื้นฐานแบบไม่ทำลาย (Non-destructive analysis) เพื่อศึกษาเกี่ยวกับโครงสร้างของผลึก (Crystal structure) การจัดเรียงตัวของอะตอมในโมเลกุลของสารประกอบหรือผลึกต่างๆโดยอาศัยหลักการ เลี้ยวเบนและการกระเจิงของรังสีเอกซ์ และความรู้ทางผลิกศาสตร์ (Crystallography) เครื่องมือชนิดนี้มี ความสำคัญมากในกระบวนการควบคุมคุณภาพการผลิตสำหรับตรวจสอบสมบัติของวัตถุดิบ และ ผลิตภัณฑ์ในกระบวนการผลิตขั้นตอนต่างๆ

ภาพประกอบ 6 ส่วนประกอบของเครื่องวิเคราะห์ธาตุด้วยรังสีเอกซ์

ที่มา: Institute of Chemical Sciences and Engineering ISIC 2011. (Online).

หลักการทำงาน

หลักการทำงานของเครื่องเอกซ์เรย์ดิฟแฟรคชันอาศัยรังสีเอกซ์ซึ่งมีสมบัติเป็นคลื่นแม่เหล็กไฟฟ้า ในการวิเคราะห์โครงสร้างผลึก คลื่นที่ใช้มีความยาวประมาณ 0.5-2.5 อังสตรอม ซึ่งเป็นความยาวในช่วง ของขนาดอะตอมหรือระยะห่างระหว่างชั้นของอะตอม จะใช้รังสีเอกซ์ที่ความยาวคลื่นเดียวส่องไปที่ ตัวอย่างซึ่งวางไว้บนแท่นหมุนทำมุม (0) 0° ถึง 90° กับตัวอย่าง และเครื่องตรวจวัดจะหมุนตามไปด้วย ความเร็วคงที่ ความเร็วในการหมุนนี้เป็นปัจจัยอีกอย่างหนึ่งที่ต้องคำนึงถึงในการวิเคราะห์ตัวอย่าง ตัว ตรวจวัดจะบันทึกมุมเป็น 20 และความเข้มของรังสีเอกซ์ ดังนั้นการเลี้ยวเบนของรังสีเอกซ์เกิดขึ้นเมื่อรังสี เอกซ์ ซึ่งเป็นคลื่นแม่เหล็กไฟฟ้าตกกระทบผลึกเกิดการกระเจิง (Scattering) โดยการชนกับอิเล็กตรอนใน อะตอมของผลึก รังสีเอกซ์ที่กระเจิงนั้นยังคงมีค่าความยาวคลื่นที่ไม่เปลี่ยนแปลงไปจากเดิม และเกิดการ แทรกสอดแบบเสริมและหักล้างกันของคลื่น การกระเจิงของรังสีเอกซ์แบบนี้ เป็นการกระเจิงแบบอาพันธ์ (Coherent scattering) และพิจารณาการเลี้ยวเบนของรังสีเอกซ์ด้วยกฎของแบรกก์ (Bragg's law) ดังภาพประกอบ 7

7 การเลี้ยวเบนของรังสีเอกซ์ ภาพประกอบ

ที่มา: อรวรรณ อุดมพร และคณะ. คณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม 2548. หน้า 15.

เมื่อรังสีเอกซ์ที่มีความยาวคลื่น (λ) ตกกระทบผลึกจะเกิดการกระเจิงจากชุดระนาบต่างๆ หาก พิจารณารังสีที่ตกกระทบแล้วเกิดการกระเจิงสำหรับระนาบสองระนาบในชุดระนาบเดียวกัน ดัง ภาพประกอบ 7 พบว่ารังสีทั้งสองมีความแตกต่างของทางเดิน (Path difference) เท่ากับ BC + CD และ ถ้ารังสีเอกซ์ทั้งสองอยู่ในเฟสเดียวกันจะมีค่า BC + CD เป็นจำนวนเท่าของความยาวคลื่นที่ตกกระทบ

$$BC + CD = n\lambda \tag{4}$$

10

(5)

เมื่อ n คือ เลขจำนวนเต็มที่มีค่าเท่ากับ 1 , 2 , 3 ...

เนื่องจาก

 $BC + CD = 2dsin\theta$ โดยที่ θ คือ มุมที่เกิดขึ้นระหว่างรังสีตกกระทบกับระนาบของผลึก

d คือ ระยะห่างระหว่างระนาบของผลึก

ดังนั้น

$2dsin\theta = n\lambda$ (6)

ซึ่งสมการที่ (6) คือ สมการแบรกก์ (Bragg's equation)

เมื่อนำข้อมูลที่ได้จากการวิเคราะห์คือความเข้มของรังสีเทียบกับมุม 20 มาแสดงเป็นกราฟ จะได้พีคที่ค่า มุมบางค่า สอดคล้องกับการแทรกสอดแบบเสริมของชุดระนาบต่างๆ รูปแบบของพีคจะเป็นตัวบ่งชี้ ลักษณะเฉพาะของโครงสร้างผลึกแบบต่างๆ จากความสัมพันธ์ของสมการแบรกก์จะสามารถหาค่า ระยะห่างระหว่างระนาบของผลึก (d หรือ d-spacing) ของแต่ละพีคแล้วนำไปเปรียบเทียบค่ามาตรฐาน JCPD (Joint Committee on Powder Diffraction Standard) ที่มีอยู่ (วีระศักดิ์ อุดมกิจเดชา; และคน อื่นๆ. 2543: 309-321)

4.3 การวิเคราะห์เส้นใยด้วยเครื่องฟูเรียร์ทรานส์ฟอร์ม อินฟราเรด สเปกโตรสโคปี (Fourier Transform Infrared Spectroscopy : FT-IR)

ฟูเรียร์ทรานส์ฟอร์ม อินฟราเรด สเปกโตรสโคปี (FT-IR) เป็นเทคนิคอย่างหนึ่งที่นิยมใช้ในการ วิเคราะห์ ตรวจสอบและศึกษาเกี่ยวกับโมเลกุลของสาร นิยมใช้เป็นเทคนิคสำหรับวิเคราะห์หาหมู่ฟังก์ชัน และโครงสร้างทางเคมีของสาร โดยสามารถวิเคราะห์ได้ทั้งเชิงคุณภาพและเชิงปริมาณ นิยมใช้เทียบกับ สารมาตรฐานที่ทราบความเข้มข้นที่แน่นอนแล้ว

ช่วงคลื่นอินฟราเรด (0.78-1,000 ไมโครเมตร) อยู่ระหว่างช่วงคลื่นวิสิเบิล (Visible light) และช่วง คลื่นไมโครเวฟ (Microwave) ช่วงคลื่นอินฟราเรดแบ่งย่อยออกเป็น 3 ช่วง ดังนี้

ตาราง 1 แสดงช่วงคลื่นอินฟราเรด

ช่วงคลื่น	ช่วงความยาวคลื่น (µm)	เลขคลื่น (cm⁻¹)
อินฟราเรดย่านใกล้	0.78-2.5	12,800-4,000
(near IR, NIR)		
อินฟราเรดย่านกลาง	2.5-50	4,000-200
(mid IR or fundamental IR)		
อินฟราเรดย่านไกล (far IR)	50-1,000	200-10
ช่วงคลื่นอินฟราเรดที่ถูกนำมาใช้มากจะอยู่ในช่วง 4,000 - 670 cm⁻¹ สำหรับช่วงคลื่นอินฟราเรดย่านกลาง จะให้แถบการดูดกลืน (Absorption bands) ที่ให้ข้อมูลเกี่ยวกับการวิเคราะห์เชิงคุณภาพและเชิงปริมาณ ของหมู่ฟังก์ชัน และข้อมูลที่เกี่ยวกับโครงสร้างของโมเลกุล ช่วงคลื่นอินฟราเรดมีพลังงานไม่เพียงพอที่จะ ทำให้อิเล็กตรอนในโมเลกุลเกิดการแทรนซิชันได้ แต่ทำให้เกิดการแทรนซิชันที่เกิดจากการสั่นของโมเลกุล สเปกตรัมที่ได้มีลักษณะเป็นแถบที่แคบและอยู่ใกล้กันมากหรือมีการซ้อนเหลื่อมกันของสเปกตรัม การ เกิดแทรนซิชันจะมีทั้งการแทรนซิชันระหว่างระดับพลังงานของการสั่นและการหมุนด้วย

การดูดกลืนช่วงคลื่นอินฟราเรดของโมเลกุล มี 2 ประการ ดังนี้

 1. โมเลกุลที่กำลังสั่นจะต้องมีการเปลี่ยนแปลงโมเมนต์ขั้วคู่ (Dipole moment) ภายในโมเลกุล นั้นคือโมเลกุลของสารอินทรีย์และสารอนินทรีย์ที่มีความหนาแน่นของประจุ (Charge density) ของ อะตอมต่างกัน จะให้แถบดูดกลืนคลื่นแสงอินฟราเรดได้ เรียกโมเลกุลเหล่านี้ว่า IR-active สำหรับโมเลกุล ที่ประกอบด้วยสองอะตอมที่เหมือนกันจะไม่มีความแตกต่างของความหนาแน่นของประจุ การสั่นของ โมเลกุลดังกล่าวจึงไม่มีการเปลี่ยนแปลงโมเมนต์ขั้วคู่จะไม่ให้แถบดูดกลืนคลื่นแสงอินฟราเรด เรียกโมเลกุล เหล่านี้ว่า IR-inactive

2. พลังงานของคลื่นแสงอินฟราเรดที่ให้กับโมเลกุลจะต้องมีค่าพอดีกับผลต่างของระดับพลังงาน ของการสั่นที่เกี่ยวข้องกับการแทรนซิชัน ตำแหน่งของอะตอมต่างๆในโมเลกุลที่มาสร้างพันธะกันนั้นไม่ได้ อยู่นิ่งตลอดเวลา แต่จะเกิดการเปลี่ยนแปลงไปแบบต่อเนื่อง ทั้งนี้โมเลกุลเกิดการสั่นอันเนื่องมาจากการยืด (Stretching or valency) และการงอ (Bending) การสั่นที่เกิดจากการเปลี่ยนความยาวพันธะเรียกว่าการ สั่นแบบยืด (Stretching or valency vibration) ทำให้พันธะยืดออกหรือหดสั้นลง การสั่นแบบยืดมี 2 แบบ คือ การยืดแบบมีสมมาตร (Symmetric, sym) และการยืดแบบปฏิสมมาตร (Asymmetric, asym) การสั่น อันเนื่องมาจากการเปลี่ยนแปลงมุมพันธะในโมเลกุลเรียกว่า การสั่นแบบงอ (Bending) หรือการผิดรูป (Deformation) ซึ่งมีด้วยกัน 4 แบบ การงอแบบกรรไกรภายในระนาบ (In-plane scissoring) การงอแบบ โคลงภายในระนาบ (In-plane rocking) การงอแบบกระดิกออกนอกระนาบ (Out-of-plane wagging) และการงอแบบบิด (Out-of-plane twisting) การสั่นแบบยึดและแบบงอของแต่ละพันธะในโมเลกุล จะมีความถี่ของการสั่นตรงกับระดับ พลังงานที่มีค่าแน่นอน เมื่อโมเลกุลได้รับคลื่นแสงอินฟราเรดที่มีความถี่ตรงกับการสั่นของพันธะในโมเลกุล ก็จะดูดกลืนคลื่นอินฟราเรดที่มีความถี่นั้น ทำให้เกิดการแทรนซิชันของการสั่น (Vibrational transition) และให้แถบดูดกลืนที่เป็นพีคแคบๆพลังงานจากคลื่นแสงอินฟราเรดที่ถ่ายเทให้แก่พันธะของโมเลกุลจะไป เพิ่มแอมพลิจูดของการสั่นในโมเลกุลนั้น นั่นคือโมเลกุลจะมีพลังงานมากกว่าปกติ (โมเลกุลอยู่ในสภาวะ เร้า) เมื่อโมเลกุลกลับสู่สภาวะพื้นจะปล่อยพลังงานในรูปความร้อนออกมา การสั่นแบบยืดจะให้แถบ ดูดกลืนคลื่นแสงอินฟราเรดในช่วง 4,000 - 800 cm⁻¹ และการสั่นแบบงอจะให้แถบดูดกลืนคลื่นแสง อินฟราเรดในช่วง 1,700 – 400 cm⁻¹ โมเลกุลของสารอินทรีย์ที่มีหมู่ฟังก์ชันเหมือนกัน จะให้อินฟราเรด สเปคตรัมในช่วงเลขคลื่น 3,500 - 1,300 cm⁻¹เรียกว่า functional group area หรือ group frequency region แต่จะปรากฏความแตกต่างกันในช่วงเลขคลื่น 1,200 - 600 cm⁻¹ เรียกว่า fingerprint region หรือ บริเวณลายนิ้วมือ (นิพนธ์ ดังคณานุรักษ์; และคณิตา ตังคณานุรักษ์. 2547: 305-372)

4.4 การวิเคราะห์เส้นใยด้วยเครื่องดิฟเฟอเรนเซียล เทอร์มอล อนาไลซิส (Differential Thermal Analysis : DTA)

เครื่องดิฟเฟอเรนเซียล เทอร์มอล อนาไลซิส เป็นเครื่องมือวิเคราะห์เชิงความร้อน โดยวัดออกมา ในรูปของอุณหภูมิที่ต่างกันระหว่างสารตัวอย่างกับสารอ้างอิง ในระหว่างให้ความร้อนอุณหภูมิของ ตัวอย่างเปลี่ยนแปลงในลักษณะการดูด (Endothermic) หรือการคายความร้อน (Exothermic) เนื่องจาก การเปลี่ยนแปลงระดับพลังงานภายใน (Enthalpic transition) เช่นจากการเปลี่ยนเฟส การละลาย การ เปลี่ยนแปลงโครงสร้างผลึก การเดือด การเผาไหม้ การระเหย การคายน้ำ การแตกตัว กระบวนการ ออกซิเดชัน รีดักชัน และปฏิกิริยาเคมีต่างๆ การเปลี่ยนแปลงอุณหภูมิจะถูกตรวจวัดค่าความแตกต่างของ อุณหภูมิของตัวอย่างกับสารอ้างอิง และจะถูกบันทึกออกมาเป็นกราฟดังภาพประกอบ 8

ภาพประกอบ 8 แสดงผลของการเปลี่ยนแปลงอัตราการเปลี่ยนแปลงของอุณหภูมิ

ที่มา: Thai Ceramic Society. (online)

เครื่องดิฟเฟอเรนเชียล เทอร์มอล อนาไลซิส ประกอบด้วย

- เครื่องวัดอุณหภูมิ (Thermocouple) นิยมใช้ Pt - Pt/Rh หรือ Ni - Ni/Cr เส้นผ่านศูนย์กลาง 0.1 - 0.3 mm

- ถ้วยใส่ตัวอย่างและสารอ้างอิง ทำจากวัสดุที่มีสมบัติเฉื่อยต่อการเปลี่ยนแปลงในช่วงอุณหภูมิ ที่ทดลอง และมีค่า Thermal conductivity สูงเพื่อให้สามารถนำความร้อนสู่ตัวอย่างหรือสารอ้างอิงได้ดี

- ห้องควบคุมบรรยากาศในการทดลอง ดังภาพประกอบ 9 (Campbell; Pethrick; & White.

2000: 362-375)

ภาพประกอบ 9 เครื่องดิฟเฟอเรนเชียล เทอร์มอล อนาไลซิส

ที่มา: Shimadsu Analytical Instrument. (online)

.

4.5 การวิเคราะห์เส้นใยด้วยเครื่องเทอร์โมกราวิเมตริก อนาไลซิส(Thermogravimetric Analysis : TGA)

การวิเคราะห์เส้นใยด้วยเทอร์โมกราวิเมตริก อนาไลซิส (TGA) เป็นเทคนิคที่ใช้วิเคราะห์ความ เสถียรของวัสดุเมื่อได้รับความร้อน โดยการวัดน้ำหนักของวัสดุที่เปลี่ยนแปลงในแต่ละช่วงอุณหภูมิด้วย เครื่องชั่งที่มีความไวสูง (Thermobalance) ดังภาพประกอบ 10 เทคนิคนี้เหมาะสำหรับวิเคราะห์การ เปลี่ยนแปลงสภาพของวัสดุที่เกี่ยวข้องกับการดูดซับแก๊ส หรือการระเหยของน้ำ การตกผลึก (Crystallization) อันเนื่องจากการเปลี่ยนเฟส การแตกตัวของวัสดุ (Decomposition)

เริ่มจากนำตัวอย่างมาวางในถาดโดยจะบันทึกน้ำหนักอย่างต่อเนื่องของตัวอย่างทุกๆการ เปลี่ยนแปลงของอุณหภูมิด้วยเครื่องชั่งที่มีความไวสูง จากนั้นนำข้อมูลที่ได้มาแสดงในรูปแบบกราฟ ดังตัวอย่างที่แสดงในภาพประกอบ 11 โดยการพลอตกราฟ TGA อาจจะพลอตระหว่างน้ำหนักที่หายไปกับ อุณหภูมิ หรือ พลอตระหว่างค่าดิฟเฟอเรนเซียลของน้ำหนักกับอุณหภูมิ สิ่งที่เครื่องสามารถวิเคราะห์ ออกมาได้ ได้แก่

- วิเคราะห์ปริมาณสารเติมแต่งในพลาสติก
- วิเคราะห์ปริมาณน้ำหรือปริมาณตัวทำละลายใน สี กาว เป็นต้น
- วิเคราะห์ปริมาณองค์ประกอบต่างๆของผลิตภัณฑ์ยาง เช่น ปริมาณยาง สารเติมแต่ง เป็นต้น
- ใช้ประยุกต์ในการวิเคราะห์หาค่าความชื้น (Moisture) ปริมาณสารอนินทรีย์ (Inorganic

residue) ในผลิตภัณฑ์ประเภทถ่านหิน (Sandler; et al. 1998: 108-115)

ภาพประกอบ 10 ตัวอย่างเครื่องเทอร์โมกราวิเมตริก อนาไลซิส

ที่มา: TA instruments. (online)

ภาพประกอบ 11 ตัวอย่างกราฟ TGA

ที่มา: S. Cheng; et al. (2009). Preparation of Nonwoven Polyimide/Silica Hybrid Nanofiberous Fabrics by Combining Electrospinning and Controlled in situ sol-gel techniques. *European Polymer Journal*. (online).

5. เอกสารและงานวิจัยที่เกี่ยวข้อง

ในการผลิตเส้นใยซิลิกานั้นสามารถเตรียมสารตั้งต้นสำหรับการผลิตเส้นใยซิลิกาได้ 3 รูปแบบ คือ 1. เตตระเอทิลออโทซิลิเกตเป็นสารตั้งต้นให้อนุภาคซิลิกาสำหรับผลิตเส้นใยซิลิกา 2. เตตระเอทิลออโท-ซิลิเกตเป็นสารตั้งต้นให้อนุภาคซิลิกาผสมกับพอลิเมอร์สำหรับผลิตเส้นใยซิลิกา 3. อนุภาคนาโนซิลิคอนได ออกไซด์ (SiO₂ nanoparticles) ผสมพอลิเมอร์สำหรับผลิตเส้นใยซิลิกาซึ่งแสดงให้เห็นดังเอกสารและ งานวิจัยที่เกี่ยวข้อง ดังนี้

5.1 การผลิตเส้นใยซิลิกาด้วยกระบวนการปั้นด้วยไฟฟ้าสถิต

ปี พ.ศ. 2546 (ค.ศ. 2003) ชอย และคนอื่นๆ (Choi; et al. 2003: 891-893) ได้ศึกษาและผลิต เส้นใยนาโนซิลิกา ด้วยกระบบวนการบั่นด้วยไฟฟ้าสถิตและเทคนิคโซลเจล (Sol-gel) ในการเตรียมสาร ตั้งต้น ผู้วิจัยใช้สารตั้งต้น คือ เตตระเอทิลออโทซิลิเกต (TEOS) เอทิลแอลกอฮอล์ (C₂H₆O) น้ำกลั่น (H₂O) และกรดไฮโดรคลอริค (HCI) ในอัตราส่วนโดยโมล เท่ากับ 1 : 2 : 2 : 0.01 ผู้วิจัยเตรียมสารตั้งต้นด้วย เทคนิค โซลเจล และศึกษาผลของการปรับเปลี่ยนค่าความต่างศักย์ในช่วง 10 - 16 กิโลโวลต์ สำหรับ กระบวนการบั่นด้วยไฟฟ้าสถิต โดยกำหนดให้ระยะห่างระหว่างปลายเร็มโลหะกับตัวรองรับมีระยะ 10 เซนติเมตร ผู้วิจัยพบว่าเมื่อนำเส้นใยซิลิกาไปวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด ขนาดของเส้นใยซิลิกามีแนวโน้มว่าค่อนข้างจะเล็กลงเมื่อความต่างศักย์ไฟฟ้าเพิ่มขึ้น ขนาดของเส้นใย ซิลิกามีค่าประมาณ 200 - 600 นาโนเมตร สำหรับค่าความต่างศักย์ใฟฟ้าเพิ่มขึ้น ขนาดของเส้นใย ซิลิกามีค่าประมาณ 200 - 600 นาโนเมตร สำหรับค่าความต่างศักย์ใฟฟ้าเพิ่มขึ้น ขนาดของเส้นใย ซิลิกามีค่าประมาณ 200 - 600 นาโนเมตร สำหรับค่าความต่างศักย์ในช่วง 12 - 16 กิโลโวลต์ นอกจากนี้ ผู้วิจัยวิเคราะห์ความเป็นผลึกของเส้นใยซิลิกาด้วยเครื่องเอกซเรย์ดิฟแฟรคชัน พบว่าเส้นใยซิลิกามี ลักษณะโครงสร้างเป็นแบบอสัณฐาน (Amorphous silica) และที่ความต่างศักย์ต่างๆกัน ก็มีลักษณะ โครงสร้างเป็นแบบอลัณฐานเช่นเดียวกัน และวิเคราะห์หาหมู่ฟังก์ชันและพันธะของเล้นใยซิลิกา ซึ่งปรากฏ พืคที่ตรงตำแหน่งเลขคลื่นที่ตรงกับหมู่ฟังก์ชันและพันธะของ Si-O กลุ่มของสารอินทรีย์และกลุ่มไฮดรอก ซิล และที่ความต่างศักย์ท่าด้านก็ปรากฎพีคในลักษณะเดียวกัน

ปี พ.ศ. 2550 (ค.ศ. 2007) ลี และคนอื่นๆ (Lee; et al. 2007: 889-893) ผู้วิจัยได้ผลิตเส้นใย นาโนเชิงประกอบของซิลิคอนไดออกไซด์ และไทเทเนียมไดออกไซด์ (ไทเทเนีย) ด้วยกระบวนการปั่นด้วย ไฟฟ้าสถิต ซึ่งในงานวิจัยนี้มีสารตั้งต้นที่ใช้ คือ ไอโซโพรพานอล (Isopropanol or iso) เตตระเอทิลออโท ซิลิเกต น้ำกลั่น กรดไฮโดรคลอริค และไทเทเนียมพอพรอกไซด์ (TiP) โดยใช้อัตราส่วนโดยโมลดังนี้1 : 1-x : 1 :0.3 : x โดยอัตราค่า TiP มากสุดที่ใช้ คือ 50 mol% (x = 0.5) ในงานวิจัยนี้ผู้ใช้วิจัยใช้ TiP ค่าต่างๆ ดังนี้ x = 0.1 0.2 0.3 0.4 และ 0.5 ภาพจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด พบว่าเมื่อค่า x เพิ่มขึ้น ขนาดเส้นผ่านศูนย์กลางของเส้นใยก็มากขึ้นตามค่า x จากนั้นผู้วิจัยทำการเผาแคลไซน์เส้นใยที่อุณหภูมิ 800 1,000 และ 1,200 องศาเซลเซียส แล้วนำเส้นใยที่มีสัดส่วนของซิลิคอนไดออกไซด์กับไทเทเนีย 0.5SiO₂/0.5TiO₂ ไปวิเคราะห์ด้วย FT - IR พบว่าหลังจากเผาแคลไซน์เส้นใย ปรากฏพีคที่ตำแหน่งเลขคลื่น 3,448 ซึ่งแสดงหมู่ไฮดรอกซิลมีค่าลดลง พีคที่ตำแหน่งเลขคลื่น 1,400 - 1,700 cm⁻¹ ซึ่งแสดงหมู่ออแกนิค (CH₃, CH₂ และC-H) ลดลง และจากการวิเคราะห์ด้วยเครื่อง XRD โดยใช้เส้นใย (1-x)SiO₂/(x)TiO₂ ที่เผา แคลไซน์ด้วยอุณหภูมิ 1,200 องศาเซลเซียส พบว่ามีการเปลี่ยนเฟลของไทเทเนียจากอนาเทส (Anatase) เป็นรูไทล์ (Rutile) เมื่อความเข้มข้นของไทเทเนียเพิ่มมากขึ้นโดยอุณหภูมิในการเผาแคลไซน์ไม่มีผลต่อการ เปลี่ยนเฟลของไทเทเนีย

ปี พ.ศ. 2552 (ค.ศ. 2009) อัญชลี ท้วมบางไผ่ และพุทธรักษา วรานุศุภากุล (Thuambangphai, Unchalee & varanusupakul, Puttaruksa. 2009: 1-6) ศึกษาความสามารถในการดูดซับสารฟอร์มาดีไฮด์ในน้ำของ เส้นใยซิลิกาที่เตรียมด้วยกระบวนการปั่นด้วยไฟฟ้าสถิต โดยใช้ค่าความต่างศักย์ต่างๆ ดังนี้ 10 15 และ 20 กิโลโวลต์ ระยะห่างระหว่างปลายเข็มกับตัวรองรับ ดังนี้ 5 10 และ 15 เซนติเมตร โดยเส้นใยซิลิกาถูก เตรียมขึ้นด้วยสารตั้งต้นในอัตราส่วนโดยโมลดังนี้ TEOS : H₂O : HCI : C₂H₆O เท่ากับ 1 : 2 : 0.01 : 2 และเติมหมู่พึงก์ชันอะมิโนโพรพิลเข้าไป แล้วเปรียบเทียบกับเส้นใยซิลิกาที่ไม่ได้เติมหมู่พึงก์ชันอะมิโนโพรพิล พบว่า เส้นใยซิลิกาที่เติมหมู่พึงก์ชันอะมิโนโพรพิลสามารถดูดซับฟอร์มาดีไฮด์ในน้ำได้มากกว่าเส้นใยซิลิกา ที่ไม่ได้เติมหมู่พึงก์ชันอะมิโนโพรพิลประมาณ 9 เท่า

ผู้วิจัยนำเส้นใยซิลิกาที่ยังไม่เติมหมู่อะมิโนโพรพิลไปวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอน แบบส่องกราด พบว่าค่าความต่างศักย์และระยะห่างระหว่างปลายเข็มกับตัวรองรับไม่ได้มีผลต่อขนาดของ เส้นใย โดยเส้นใยมีขนาดเส้นผ่านศูนย์กลางโดยเฉลี่ย 200-270 นาโนเมตร สำหรับเส้นใยซิลิกาที่เติมหมู่ อะมิโนโพรพิลลักษณะของเส้นใยจากการวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด พบว่า ลักษณะของเส้นใยมีขนาดใหญ่กว่าและไม่เรียบ และผู้วิจัยยังวิเคราะห์เส้นใยซิลิกาด้วยเครื่อง TGA พบว่า มวลที่หายไป ในช่วง 400-700 องศาเซลเซียส เป็นมวลของหมู่พังก์ชันอะมิโนโพรพิล ในเส้นใยซิลิกา

ปี พ.ศ. 2553 (ค.ศ. 2010) อิมูระ และคนอื่นๆ (limura; et al. 2010: 64-68) ศึกษาการผลิต เส้นใยชิลิกาด้วยกระบวนการบั่นด้วยไฟฟ้าสถิต และเตรียมสารตั้งต้นด้วยเทคนิค โซล-เจล (Sol-gel) ซึ่งสารตั้งต้นที่นำมาใช้ได้แก่ เตตระเอทิลออโทซิลิเกต เอทิลแอลกอฮอล์ น้ำกลั่น และกรดไฮโดรคลอริค โดยผู้วิจัยศึกษาบัจจัยเกี่ยวกับผลของบริมาณน้ำกลั่นที่มีต่อความหนืดของสารละลาย โดยศึกษา เปรียบเทียบอัตราส่วนระหว่างน้ำกลั่นต่อเตตระเอทิลออโทซิลิเกต (r = H₂O/TEOS) ที่มีต่อระยะเวลาใน การหนึดของสารละลาย โดยอัตราส่วนโมลาร์ที่ผู้วิจัยใช้ในการผสมสารละลายมี 5 ตัวอย่าง ซึ่งในแต่ละ ตัวอย่างมีค่า r ต่างๆกัน ได้แก่ 4.0 2.7 1.7 1.7 และ 1.7 ตามลำดับ พบว่าสำหรับตัวอย่างที่ 1 และ 2 พบว่า เวลาที่ใช้ในการทำให้สารละลายหนืดน้อยลง เมื่อค่า r เพิ่มขึ้น โดยตัวอย่างที่ 1 ใช้เวลาในการหนึด ของสารละลายน้อยกว่าตัวอย่างที่ 2 ดังภาพประกอบ 12 แต่อย่างไรก็ตามสารละลายยังไม่สามารถนำไป บั่นเป็นเส้นใยได้ สำหรับตัวอย่างที่ 3 มีค่า r น้อยกว่า 2 ไม่มีความหนืดเลย แต่ตัวอย่างที่ 4 และ 5 มีค่า r น้อยกว่า 2 แต่พบว่าสารละลายมีความหนืด เนื่องจากในระหว่างกระบวนการโซลเจล มีการปรับลด ความชื้นโดยใช้ โพแทสเซียมคลอไรด์ (KCI) สำหรับตัวอย่างที่ 4 และใช้แคลเซียมไนไตรด์ (Ca(NO₃)₂) ลำหรับตัวอย่างที่ 5 พบว่าตัวอย่างที่ 4 ใช้เวลา 7 ชั่วโมงสารละลายมีความหนืดเพิ่มขึ้นเรื่อยๆ และตัวอย่าง ที่ 5 ใช้เวลา 10 ชั่วโมง สารละลายมีความหนืดเพิ่มขึ้นเรื่อยๆ ดังภาพประกอบ 12 และสามารถนำมาบั่น เป็นเส้นใยได้ โดยขนาดเล้นผ่านศูนย์กลางของเล้นใยเพิ่มขึ้นตามความหนืดของสารละลายที่เพิ่มขึ้นด้วย

ภาพประกอบ 12 แสดงความสัมพันธ์ระหว่างเวลา กับ ความหนืดของสารละลาย ของตัวอย่าง

ที่มา: limura; et al. (2010). Preparation of Silica Fibers and Non-woven Cloth by Electrospinning. *Advanced Power Technology.* (online).

5.2 การผลิตเส้นใยซิลิกาผสมพอลิเมอร์ด้วยกระบวนการปั้นด้วยไฟฟ้าสถิต

ปี พ.ศ. 2548 (ค.ศ. 2005) จาง และคนอื่นๆ (Zhang; et al. 2005: 353-358) ศึกษาการผลิตเส้นใยซิลิกา ด้วยกระบวนการปั่นด้วยไฟฟ้าสถิต ด้วย 2 วิธีที่ต่างกัน ดังนี้

วิธีแรกเตรียมสารตั้งต้นสำหรับผลิตเส้นใยซิลิกา จากเตตระเอทิลออโทซิลิเกต เอทิลแอลกอฮอล์ กรด ไฮโดรคลอริค และ น้ำ เมื่อผสมสารตั้งต้นแล้วนำเข้าตู้อบที่อุณหภูมิ 60 องศาเซลเซียส จนกระทั้งได้สารละลายที่มี ความหนืดพอเหมาะ จากนั้นนำสารละลายที่หนืดไปปั่นเป็นเส้นใยด้วยกระบวนการปั่นด้วยไฟฟ้าสถิต ใช้ความ ต่างศักย์ 20 กิโลโวลต์ ระยะห่างระหว่างปลายเข็มกับตัวรองรับ 1 กิโลโวลต์ต่อเซนติเมตร (20 เซนติเมตร) เมื่อ วิเคราะห์ลักษณะเส้นใยซิลิกาจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดพบว่าเส้นใยมีลักษณะเป็นเส้นยาว และเรียบ

วิธีที่สอง ผลิตเส้นใยไนลอน 6 ด้วยกระบวนการปั่นด้วยไฟฟ้าสถิต สารตั้งต้นที่ใช้ คือ กรดฟอร์มิก (Formic acid) ร้อยละ 80 โดยน้ำหนัก และสารละลายไนลอน 6 (Nylon-6 solution) ร้อยละ 20 โดย น้ำหนัก จากนั้นเคลือบซิลิกาบนเส้นใยไนลอน 6 โดยเทคนิคโซลเจล เส้นใยที่ได้มีขนาดเส้นผ่านศูนย์กลาง ประมาณ 100 - 200 นาโนเมตร และเมื่อวิเคราะห์เส้นใยด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด ลักษณะของเส้นใยที่ได้จะไม่เรียบ และไม่ค่อยเป็นเส้นยาวไม่มีความสม่ำเสมอ

จากนั้นเคลือบเส้นใยซิลิกาที่ผลิตขึ้นจากทั้งสองวิธีด้วยอะลูมิเนียมไนไตรด์ (Aluminium nitride : AIN) โดยใช้เทคนิค Traditional physical vapor deposition โดยใช้ความดัน 4 - 40 มิลลิทอร์ ที่อุณหภูมิ 150 - 500 องศาเซลเซียส สำหรับงานวิจัยนี้ผู้วิจัยวิเคราะห์เส้นใยด้วยเครื่อง FT - IR ปรากฏพีคที่ตำแหน่ง เลขคลื่น 1,043 cm⁻¹ ซึ่งเป็นพันธะระหว่างโมเลกุลของ ซิลิคอนกับออกซิเจน (Si – O - Si) และปรากฏพีค ที่ตำแหน่งเลขคลื่น 1,624 cm⁻¹ และ 3,210 cm⁻¹ ซึ่งเป็นพันธะระหว่างโมเลกุลของน้ำ (H₂O) และซิลิคอน กับหมู่ OH (Si - OH)

ภH (Si - OH) ปี พ.ศ. 2546 (ค.ศ. 2003) เซา และคนอื่นๆ (Shao; et al. 2003: 1579-1584) ศึกษาการนำวัสดุอินทรีย์ และอนินทรีย์มาผสมกัน เพื่อผลิตเป็นเส้นใยผสมซึ่งเส้นใยผสมนี้ผู้วิจัยได้นำ พอลีไวนิลแอลกอฮอล์ (PVA) และ ซิลิกามาผสมกัน โดยใช้เตตระเอท็อกซีซิเลน (Tetraethoxysilane) เป็นสารตั้งต้นสำหรับซิลิกามาผสมกันและผลิต เป็นผืนเส้นใยโดยใช้กระบวนการปั้นด้วยไฟฟ้าสถิต ซึ่งเป็นเทคนิคที่สามารถผลิตเส้นใยที่มีขนาดเล็กในระดับนาโน เมตรและได้เส้นใยที่มีความต่อเนื่อง โดยผู้วิจัยผสมส่วนผสมต่างๆในอัตราส่วนโดยโมล ดังนี้ TEOS : H₃PO₄ : H₂O เท่ากับ 1:0.01:11 แล้วนำสารละลายที่ผสมแล้วไปปั่นบน สเตอเรอร์ (Stirrer) 5 ชั่วโมง หลังจากเตรียมซิลิกาเจล เรียบร้อยแล้ว เติมสารละลาย PVA ลงในซิลิกาเจล จนได้สารละลายที่มีความเข้มข้นของซิลิกาแตกต่างกัน 5 ความ เข้มข้น คิดเป็นร้อยละโดยน้ำหนัก (wt%) ดังนี้ 22 34 40 49 และ 59 และสารละลาย PVA ได้สารละลายทั้งหมด 6 ชุด และนำสารละลายไปปั่นด้วยกระบวนการปั่นด้วยไฟฟ้าสถิต โดยใช้ความต่างศักย์ 15-20 กิโลโวลต์ และ เปรียบเทียบขนาดและลักษณะเส้นใยของแต่ละตัวอย่างด้วยกล้องจลทรรศน์อิเล็กตรอนแบบส่องกราดสำหรับ เส้นใย PVA จะมีขนาดเส้นผ่านศูนย์กลาง 200-300 นาโนเมตร และเส้นใยมีจุดแยกของเส้นใย และสำหรับเส้นใย ้ผสมระหว่างซิลิกาและ PVA ข้อแรก พบว่าลักษณะของเส้นใยมีจะจุดแยกลดลงและมีความเป็นเส้นเดี่ยวมากขึ้น ตามปริมาณของซิลิกาที่เพิ่มขึ้น ข้อสอง พบว่าลักษณะของเส้นใยเริ่มมีเม็ดลูกปัด (Bead) ปนในเส้นใยเมื่อความ เข้มข้นของซิลิกาเพิ่มขึ้นถึง 49 และ 59 wt% จากการวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด แสดง ให้เห็นว่า การผสมซิลิกาลงในสารละลาย PVA มีผลต่อการหนืดของสารละลาย ความตึงผิว และความเข้มข้นของ สารละลาย ซึ่งปริมาณความเข้มข้นของซิลิกาในเส้นใยมีผลต่อลักษณะของเส้นใยอย่างมาก และในงานวิจัยนี้ ผู้วิจัยวิเคราะห์หมู่ฟังก์ชันและพันธะของเส้นใยโดยใช้เครื่อง FT-IR พบว่าเส้นใยทั้ง 6 ชุด มีลักษณะพีคเหมือนกัน แต่พีคที่ตำแหน่งเลขคลื่น 1,100 cm⁻¹ จะลึกมากขึ้นเมื่อความเข้มข้นของซิลิกามากขึ้น และวิเคราะห์ความเป็น ผลึกด้วยเครื่อง XRD พบว่าเส้นใย PVA ปรากฏพีคที่ตำแหน่ง 2**0** = 20° สอดคล้องกันระนาบ (101) ของผลึก PVA และสำหรับในเส้นใยผสมที่มีซิลิกาจะแสดงลักษณะอลัณฐาน (amorphous) ตามปริมาณของ ซิลิกาที่เพิ่มขึ้น สำหรับการวิเคราะห์ด้วยเครื่อง TGA พบว่า เส้นใย PVA มีการลดลงของน้ำหนักในสองช่วง คือช่วงอุณหภูมิ 350 และ 450 องศาเซลเซียส และสำหรับเส้นใยที่เติมซิลิกามีการลดลงของน้ำหนักสามช่วง คือช่วงอุณหภูมิ 350 และ 300 องศาเซลเซียส และสำหรับเส้นใยที่เติมซิลิกามีการลดลงของน้ำหนักสามช่วง คือช่วงหนึ่ง ระหว่าง 50 และ 300 องศาเซลเซียส ช่วงสอง ระหว่าง 300 และ 400 องศาเซลเซียส ช่วงสามตั้งแต่ 400 องศาเซลเซียส ในช่วง แรกน้ำหนักที่หายไปเป็นผลจากการระเหยของน้ำหรือแอลกอฮอล์ใน TEOS ซึ่งขึ้นอยู่กับส่วนผสมในแต่ละ สารละลาย ช่วงสองเป็นผลจากการลดลงของ PVA ในช่วงที่สามจะเกี่ยวกับโครงสร้างหลักของ PVA

ปี พ.ศ. 2551 (ค.ศ. 2008) เมชิรา กฤศนเศรณี และคนอื่นๆ (Krissanasaeranee, Methira; et al. 2008: 2830-2835) ศึกษาและผลิตเล้นใยเชิงประกอบของพอลิไวนิลแอลกอฮอล์/ซิลาเทรน (PVA/Silatrane) โดยใช้ กระบวนการปั่นด้วยไฟฟ้าสถิต เครียมสารตั้งต้นด้วยเทคนิคโซลเจล เส้นใยเชิงประกอบเตรียมขึ้นโดยใช้ PVA ที่มี ความเข้มข้นต่างกัน ดังนี้ คือ 6 10 และ13 wt% โดยศึกษาปัจจัยต่างๆที่มีผลต่อลักษณะและขนาดของเล้นใย ประกอบ ดังนี้ (A) ความเข้มข้นของพอลีไวนิลแอลอกฮอล์ โดยเลือกใช้ความต่างศักย์ไฟฟ้า 15 kV และระยะห่าง ระหว่างปลายเข็มกับแผ่นรองรับเส้นใย 10 เซนติเมตร พบว่าที่ความเข้มข้น 6 wt% เส้นใยเจะมีเม็ดลูกบัดปนอยู่ใน เส้นใย และมีขนาดเล้นผ่านศูนย์กลางของเส้นใยประมาณ 144 ± 100 nm ที่ความเข้มข้น 10 และ 13 wt% เส้นใยมี ลักษณะเรียบเป็นเส้นยาว ขนาดเส้นผ่านศูนย์กลางของเส้นใย 142 ± 46 และ 405 ± 128 wt% ตามลำดับ (B) ความต่างศักย์ไฟฟ้า ใช้ความต่างศักย์ไฟฟ้า 9 - 17.5 kV และระยะระหว่างปลายเข็มกับแผ่นรองรับเส้นใย 10 เซนติเมตร โดยใช้สารละลายที่มีความเข้มข้นของ PVA เป็น 10 wt% พบว่า ที่ความต่างศักย์ 9 - 15 kV เส้นใยที่ได้ มีลักษณะเรียบ และขนาดเส้นผ่านศูนย์กลางของเส้นใยลดลง จาก 134 ± 39 ถึง 119 ± 35 nm ตามค่าความต่าง ศักย์ที่เพิ่มขึ้น และที่ความต่างศักย์มากถึง 17.5 kV เล้นใยที่ได้จะมีเม็คลูกบัดปนในเล้นใย แต่ขนาดเส้นผ่าน ศูนย์กลางของเส้นใยเพิ่มขึ้นเป็น 185 ± 60 nm (C) ระยะระหว่างปลายเข็มกับแผ่นรองรับเส้นใย ใช้ระยะห่างดังนี้ 8-15 เซนติเมตร โดยใช้สารละลายที่มีความเข้มข้นของ PVA เป็น 10 wt% ใช้ความต่างศักย์ไฟฟ้า 15 kV เส้นใยที่ โนเมตร สำหรับระยะห่าง 8 10 และ 15 เซนติเมตร ตามลำดับ นอกจากนี้ศึกษาผลของอุณหภูมิในการเผาแคลไซน์ ช่วงอุณหภูมิ 500 - 1100 องศาเซลเซียส ที่มีต่อลักษณะและขนาดเส้นผ่านศูนย์กลางของเส้นใย จากการวิเคราะห์ ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด เส้นใยที่ได้ทั้งหมดมีลักษณะเรียบและขนาดเส้นผ่านศูนย์กลางของ เส้นใย ดังนี้ ก่อนเผา 210 ± 71 นาโนเมตร และเส้นใยที่เผาแคลไซน์ มีขนาดเส้นผ่านศูนย์กลางของเส้นใย 213 ± 53 ถึง 162 ± 40 นาโนเมตร การวิเคราะห์ด้วยเครื่อง XRD ที่อุณหภูมิ 500 องศาเซลเซียส เส้นใยประกอบแสดง ลักษณะ อสัณฐาน และที่อุณหภูมิสูงกว่า 700 องศาเซลเซียส แสดงลักษณะโครงสร้างผลึกแบบคริสโตบาไลต์ (Cristobalite)

5.3 การผลิตเส้นใยผสมระหว่างซิลิกากับพอลิเมอร์โดยใช้อนุภาคซิลิกา

ปี พ.ศ.2552 (ค.ศ. 2009) ดิง และคนอื่นๆ (Ding; et al. 2009: 34-36) ศึกษาคุณสมบัติเชิงกลของเส้นใยผสม ระหว่างในลอน 6 (Nylon 6) และอนุภาคนาโนซิลิคอนไดออกไซด์ (SiO₂ nanoparticles) ด้วยกระบวนการปั่นด้วยไฟฟ้า สถิต เริ่มต้นนำในลอน 6 และอนุภาคนาโนซิลิคอนไดออกไซด์ (SiO₂, 6 wt%) มาผสมกันแล้วนำไปละลายในกรดฟอร์มิก (Formic acid) สารละลายที่ได้จะมีความเข้มข้นอยู่ในช่วง 4 - 25 wt% จากนั้นนำไปปั่นด้วยกระบวนการปั่นด้วยไฟฟ้า สถิต โดยใช้เข็มที่มีเส้นผ่านศูนย์กลาง 0.3 มิลลิเมตร ค่าความต่างศักย์อยู่ในช่วง 4 - 35 กิโลโวลต์ และระยะห่างระหว่าง ปลายเข็มและแผ่นรองรับเส้นใย เป็น 15 เซนติเมตร จากนั้นนำเส้นใยผสมไปวิเคราะห์คุณสมบัติเชิงกลของเส้นใย ผสมเพื่อทดสอบการยึดหยุ่นของเส้นใย พบว่าค่ามอดูลัสยึดหยุ่นของเส้นใยลดลงเมื่อขนาดเส้นผ่านศูนย์กลางของ เส้นใยมากขึ้น โดยที่ค่ามอดูลัสยึดหยุ่นมีค่าในช่วง 3.1 - 6.9 จิกะปาสคาล (GPa) ในขณะที่เส้นผ่านศูนย์กลางเส้นใย ผสมเฉลี่ยอยู่ในช่วง 600 - 1000 นาโนเมตร จากข้อมูลผู้วิจัยได้กล่าวถึงผลของความต่างศักย์และค่าความเข้มข้นของ สารละลายพบว่า ขนาดเส้นผ่านศูนย์กลางของเส้นใยลดลงเมื่อความเข้มข้นของสารละลายลดลง และขนาดเส้นผ่าน ศูนย์ของเส้นใยลดลงเมื่อค่าความต่างศักย์ไฟฟ้าเพิ่มมากขึ้น

บทที่ 3 วิธีดำเนินงานวิจัย

งานวิจัยนี้เป็นการผลิตเส้นใยซิลิกา (Silica fibers) จากกระบวนการปั่นด้วยไฟฟ้าสถิต (Electrospinning) โดยใช้เทคนิคโซลเจล (Sol-gel) ในการเตรียมสารละลายตั้งต้น เมื่อได้เส้นใยซิลิกาจากการปั่น ด้วยไฟฟ้าสถิต เส้นใยซิลิกาถูกนำไปเผาแคลไซน์ที่อุณหภูมิสูง การวิเคราะห์เส้นใยประกอบด้วย การวิเคราะห์ ลักษณะของเส้นใย ธาตุองค์ประกอบและพันธะในเส้นใย และความเสถียรทางความร้อน

ในงานวิจัย มีการใช้วัสดุและอุปกรณ์ต่างๆ ดังนี้

1. วัสดุที่ใช้ในการวิจัย

- 1. เตตระเอทิลออโทซิลิเกต (Tetraethyl orthosilicate: TEOS) จากบริษัท Acros Organics
- 2. กรดไฮโดรคลอริค (Hydrochloric acid: HCI) จากบริษัท Carlo Erba Reagents
- 3. เอทิลแอลกอฮอล์ (Ethyl alcohol: C_2H_6O) จากบริษัท Carlo Erba Reagents
- 4. น้ำกลั่น (Distilled water: H₂O)
- 5. แหล่งจ่ายไฟฟ้าความต่างศักย์สูง (High-voltage power supply) Grammar High Voltage Reserch
- 6. แผ่นรองรับเส้นใย ขนาด 10×10 ตารางเซนติเมตร
- 7. แผ่นฟอล์ย ขนาด 15×15 ตารางเซนติเมตร
- 8. หลอดฉีดยา (Syringe) ขนาด 5 มิลลิลิตร
- 9. เข็มโลหะ (Needle) ขนาด 0.9 มิลลิเมตร
- 10. เตาเมาอุณหภูมิสูงสำหรับวัสดุเซรามิก (High-Temperature Furnace for Ceramic Materials)
- 11. สเตอเรอร์ (Stirrer)
- 12. วอเตอร์ บาธ (Water bath)

2. อุปกรณ์ที่ใช้ในการวิเคราะห์เส้นใยซิลิกา

1. กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscopy: SEM) รุ่น JEOL JSM-6335F

2. เครื่องฟูเรียร์ทรานส์ฟอร์ม อินฟราเรด สเปกโตรสโคปี (Fourier Transform Infrared Spectroscopy:

FT-IR) รุ่น Perkin Elmer Spectrum One

3. เครื่องเอกซเรย์ดิฟแฟรคชัน (X-Ray Diffraction: XRD) รุ่น X'Pert PRO

4. เครื่องดิฟเฟอเรนเซียล เทอร์มอล อนาไลซิส (Differential Thermal Analysis: DTA) รุ่น NETZSCH, STA449C Jupiter

5. เครื่องเทอร์โมกราวิเมตริก อนาไลซิส (Thermogravimetric Analysis: TGA) รุ่น NETZSCH, STA449C Jupiter

3. สถานที่ในการวิจัย

1. ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ

2. ศูนย์เครื่องมือวิทยาศาสตร์และเทคโนโลยี จุฬาลงกรณ์มหาวิทยาลัย

3. ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

4. ศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ (MTEC)

5. ศูนย์เทคโนโลยีไมโครอิเล็กทรอนิกส์ (TMEC)

6. ศูนย์วิจัยเทอร์โมอิเล็กทริก มหาวิทยาลัยราชภัฏสกลนคร

4. ขั้นตอนการวิจัย ขั้นตอนการเตรียมสารละลาย

1. สารตั้งต้นที่ใช้ ได้แก่ เตตระเอทิลออโทซิลิเกต น้ำกลั่น กรดไฮโดรคลอริค เอทิลแอลกอฮอล์ ในอัตราส่วน โดยโมล TEOS : H₂O : HCl : C₂H₆O เท่ากับ 1 : 2 : 0.01 : 12.7 (สูตร 1) และ 1 : 2 : 0.01 : 2 (สูตร 2) ดังตาราง 2 แสดง ปริมาณส่วนผสมของสารตั้งต้นในหน่วยกรัม ทั้งสองอัตราส่วนมีขั้นตอนการเตรียมสารละลายเหมือนกัน

ตาราง 2 แสดงส่วนผสมของสารตั้งต้นทั้ง 2 สูตร

สูตร 1

ត្តចរ 1						
	มวลโมเลกุล (g/mol)	จำนวนโมล	คิดเป็นมวล(g)			
TEOS	208.33		208.33			
H ₂ O	18.015	2	36.03			
HCI	36.46	0.01	0.36			
C ₂ H ₆ O	46.07	12.7	585.07			
สูตร 2	??suns?!!					
มวลโมเลกุล (g/mol) จำนวนโมล คิดเป็นมวล(g)						
TEOS	208.33	1	208.33			
H ₂ O	18.0152	2	36.0304			
HCI	36.4609	0.01	0.364609			
C_2H_6O	46.0688 2 92.1376					

2. น้ำเตตระเอทิลออโทซิลิเกตผสมกับเอทิลแอลกอฮอล์ (สารละลายชุดที่ 1) และผสมกรดไฮโดรคลอริค กับ น้ำกลั่น (สารละลายชุดที่ 2)

 น้ำสารละลายชุดที่ 1 มาปั่นบนสเตอเรอร์ (Stirrer) เป็นเวลา 2 ชั่วโมง ด้วยความแรงระดับ 3 ที่ อุณหภูมิห้อง ระหว่างปั่นสารละลายชุดที่ 1 น้ำสารละลายชุดที่ 2 ค่อยๆหยดลงไปในสารละลายชุดที่ 1

 เมื่อปั่นสารละลายรวมในข้อ 3 ครบ 2 ชั่วโมง นำสารละลายในข้อ 3 มาใส่ในวอเตอร์บาธ ปรับ อุณหภูมิ 75 องศาเซลเซียส จนกระทั่งสารละลายมีความหนืดเหมาะสม โดยทำการชั่งมวลของสารละลาย ซึ่งควร จะมีมวลประมาณ 160 กรัม จะได้สารละลายที่มีความหนืดที่เหมาะสม

ขั้นตอนการปั้นด้วยไฟฟ้าสถิต

 เตรียมอุปกรณ์สำหรับกระบวนการปั่นด้วยไฟฟ้าสถิต โดยต่อขั้วบวกเข้ากับปลายเข็มโลหะและต่อ ขั้วลบกับแผ่นรองรับเส้นใย (ตาข่ายแกรไฟต์) ดังภาพประกอบ 13

2. นำสารละลายหนืดที่เตรียมไว้ บรรจุลงในหลอดฉีดยา ขนาด 5 มิลลิลิตร และต่อเข้ากับปลายเข็ม โลหะ ติดตั้งหลอดฉีดยากับขาตั้งโดยให้หลอดฉีดยาเอียงทำมุม ประมาณ 45 องศา กับแนวระดับ

3. ปรับระยะห่างระหว่างปลายเข็มโลหะกับแผ่นรองรับเส้นใย เป็นระยะต่างๆ ดังนี้ 15 20 และ 25 เซนติเมตร เปิดแหล่งจ่ายไฟฟ้าความต่างศักย์สูง (High- voltage power supply) พร้อมทั้งปรับค่าความต่างศักย์ เป็นค่าที่ต่างกัน ดังนี้ 13 15 17 19 และ 21 กิโลโวลต์

 นำเส้นใยซิลิกาที่ได้จากการปั่นด้วยไฟฟ้าสถิต ไปวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบ ส่องกราด

5. วัดขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกา โดยวัดเส้นผ่านศูนย์กลางเส้นใยซิลิกา 50 จุด ต่อ 1 ภาพ จากภาพที่ได้จากการวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด

ภาพประกอบ 13 แสดงอุปกรณ์สำหรับกระบวนการปั่นด้วยไฟฟ้าสถิตที่ใช้ในงานวิจัย

ขั้นตอนการเผาแคลไซน์เส้นใย

เลือกเส้นใยที่ได้จากการปั่นด้วยไฟฟ้าสถิต ชุดที่ใช้ระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใย
เชนติเมตร ความต่างศักย์ 15 kV มาใช้ในการศึกษาผลของอุณหภูมิการเผาแคลไซน์ที่มีต่อเส้นใยซิลิกา

2. นำเส้นใยที่เลือกไปวิเคราะห์ด้วย DTA และ TGA เพื่อศึกษาช่วงการเปลี่ยนเฟสและการสลายตัวของ องค์ประกอบในตัวอย่าง

น้ำเส้นใยที่เลือกไว้มาแบ่งเป็น 4 ส่วน น้ำแต่ละส่วนไปเผาแคลไซน์ที่อุณหภูมิ 400 600 800 และ
1,000 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง อุณหภูมิทั้งสี่ที่เลือกใช้จะพิจารณาจากผลในข้อ 2

ขั้นตอนการวิเคราะห์เส้นใย

นำเส้นใยซิลิกาที่ผ่านการเผาแคลไซน์ที่อุณหภูมิต่างๆ และเส้นใยซิลิกาที่ยังไม่ได้เผาแคลไซน์ไป วิเคราะห์ด้วยเครื่องมือต่างๆ เพื่อเปรียบเทียบเส้นใย ดังนี้

1. ศึกษาลักษณะพันธะ และหมู่ฟังก์ชัน ด้วยเครื่อง FT - IR

2. ศึกษาโครงสร้างผลึกของเส้นใยซิลิกา ด้วยเครื่อง XRD

 สึกษาลักษณะของเส้นใยซิลิกาที่ผ่านการเผาแคลไซน์ที่อุณหภูมิต่างๆ เปรียบเทียบกับเส้นใยซิลิกา ที่ยังไม่ได้เผาด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด

บทที่ 4 ผลการวิจัย

ในงานวิจัยนี้ได้ทำการผลิตเส้นใยซิลิกาด้วยกระบวนการปั่นด้วยไฟฟ้าสถิตและวิเคราะห์ศึกษาผลของ ปัจจัยในกระบวนการปั่นเส้นใยด้วยไฟฟ้าสถิต และอุณหภูมิในการเผาแคลไซน์ต่อเส้นใยซิลิกา ซึ่งจะได้แสดงผล การทดลองเป็นลำดับ ดังนี้

....

1. การเตรียมสารละลาย

ในการเตรียมสารละลายสำหรับงานวิจัยนี้ ได้ทำการเตรียมสารละลายตั้งต้นจากเตตระเอทิลออโทซิ ลิเคต เอทิลแอลกอฮอล์ กรดไฮโดรคลอริก และน้ำกลั่น โดยเตรียมสารละลายขึ้นมาทั้งหมด 22 ชุด (TS1 - TS22) ดังตาราง 3 ซึ่งมีทั้งที่เตรียมแล้วนำไปปั่นเป็นเส้นใยได้และไม่สามารถนำไปปั่นเป็นเส้นใยได้ เนื่องจากมีปัจจัย ต่างๆมีผลต่อการหนืดตัวของส่วนผสม ทั้งปริมาณของส่วนผสมและระยะเวลาที่ใช้ในการให้ความร้อนกับ สารละลายจนกระทั่งสารละลายมีความหนืด จากการทบทวนและศึกษาในงานวิจัยต่างๆได้มีการเตรียมส่วนผสม 2 แบบ แบบแรกทำโดยเตรียมสารละลายในอัตราส่วนโดยโมล ของ TEOS : H₂O : HCl : C₂H₂O เท่ากับ 1 : 2 : 0.01 : 12.7 ใช้กับสารละลายชุดที่ 1-7 (TS1-TS7) พบว่าในการให้ความร้อนแก่สารละลายจนกระทั่งได้สารละลายที่มี ความหนืดเพียงพอสำหรับการปั่นเป็นเส้นใยด้วยกระบวนการปั่นด้วยไฟฟ้าสถิตได้นั้นใช้เวลามากกว่า 10 ชั่วโมง แบบที่ 2 ทำโดยปรับปริมาณของเอทิลแอลกอฮอล์ให้มีปริมาณลดลงเหลือแค่ 2 โมล ได้สารละลายในอัตราส่วน TEOS : H₂O : HCl : C₂H₆O เท่ากับ 1 : 2 : 0.01 : 2 (Choi; et al. 2003: p. 891) สำหรับส่วนผสมแบบที่ 2 นี้ พบว่า ในการให้ความร้อนแก่สารละลายจนกระทั่งได้สารละลายที่มีความหนืดเพียงพอสำหรับการปั่นเป็นเส้นใยด้วย กระบวนการปั่นด้วยไฟฟ้าสถิตใช้เวลา 10 ชั่วโมง การเตรียมสารละลายตั้งต้นที่ใช้เอทิลแอลกอฮอล์ในปริมาณที่ ต่างกัน ทั้ง 2 แบบ สามารถนำสารละลายไปปั่นเป็นเส้นใยด้วยกระบวนการปั่นด้วยไฟฟ้าสถิตได้ โดยอัตราส่วน ของสารละลายที่ใช้เอทิลแอลกอฮอล์น้อยกว่าจะใช้เวลาในการให้ความร้อนแก่สารละลายน้อยกว่า(มวลของ สารละลายแบบที่ 2 หลังจากให้ความร้อนแก่สารละลาย จนกระทั้งได้สารละลายที่มีความหนืดเพียงพอสำหรับการ ้ ปั่นเป็นเส้นใยด้วยกระบวนการปั่นด้วยไฟฟ้าสถิตประมาณ 160 กรัม) โดยเส้นใยที่ได้จากการเตรียมสารละลายทั้ง

สองอัตราส่วนมีลักษณะเรียบเป็นเส้นยาวต่อเนื่องเหมือนกันดังภาพประกอบ 14 ขนาดเส้นผ่านศูนย์กลางของเส้น ใยซิลิกาที่ได้จากสารละลายที่ใช้เอทิลแอลกอฮอล์ 2 โมล มีขนาดเส้นผ่านศูนย์กลาง 417 nm สำหรับเส้นใยซิลิกา ที่ได้จากสารละลายที่ใช้เอทิลแอลกอฮอล์ 12.7 โมล มีขนาดเส้นผ่านศูนย์กลาง 613 nm ดังตาราง 4 พบว่าเส้นใย ซิลิกาที่ได้จากสารละลายที่ใช้เอทิลแอลกอฮอล์ 2 โมล มีขนาดเส้นผ่านศูนย์กลาง 613 nm ดังตาราง 4 พบว่าเส้นใย ซิลิกาที่ได้จากสารละลายที่ใช้เอทิลแอลกอฮอล์ 2 โมล มีขนาดเส้นผ่านศูนย์กลางเล็กกว่าเส้นใยซิลิกาที่ได้จาก สารละลายที่ใช้เอทิลแอลกอฮอล์ 12.7 โมล ประมาณ 176 nm ซึ่งทำให้มีอัตราส่วนของพื้นที่ผิวต่อปริมาตรมากขึ้น ด้วย ดังนั้นในการผลิตเส้นใยซิลิกาและศึกษาผลของปัจจัยในการปั่นด้วยไฟฟ้าสถิต สำหรับการศึกษาผลของ ปัจจัยในการปั่นด้วยไฟฟ้าสถิต จึงเลือกใช้ส่วนผสมสารละลายแบบที่ 2

ชุด สารละลาย	การพักสารละลาย		การให้ความร้อนในวอเตอร์บาธ		ผลการนำสารละลายมาปั่น เป็นเส้นใยด้วยไฟฟ้าสถิต	
	พัก	พัก	เปิดฝาขวด	ปิดฝาช่วงหนึ่ง 	สารละลาย	สารละลายไม่
	สารละลาย	สารละลาย	สารละลาย	จากนั้นเปิดฝ่าขวด	สามารถนำไป	สามารถนำไป
	หลัง การ	และผสม		สารละลาย	ปันได้	ปันได้
	กวน (sitr)	C ₂ H ₆ O ทิงไว้		จนกระทั่ง		
		หลังจากให้ ะ		สารละลายหนิด		
		ความรอน ไปแล้ว				
		เบแตว	-311	81- 2		
		ก่อนให้		Tor's		
		ความร้อน	Entrant L	C.		
	- A.	ในวอเตอร์			:	
		บาธต่อไป		1-15		
TS1-7		_ 1 -		- š '	ě.	\checkmark
TS8		- / -	_	+-/ a		
TS9				+1,3	:	\checkmark
TS10	\checkmark	v	J	and the second	J	
TS11	\checkmark	1.00	2	1.		\checkmark
TS12	\checkmark		- 4	1	\checkmark	
TS13			J	000	\checkmark	
TS14	\checkmark		5			\checkmark
TS15			\checkmark		\checkmark	
TS16			\checkmark			\checkmark
TS17			\checkmark			\checkmark
TS18			\checkmark		\checkmark	
TS19			\checkmark		\checkmark	
TS20			\checkmark		\checkmark	
TS21			\checkmark		\checkmark	
TS22			\checkmark		\checkmark	

(a) (b)

ภาพประกอบ 14 ภาพจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) แสดงลักษณะทางกายภาพ ของเส้นใยซิลิกาที่ได้จากการเตรียมสารละลายในอัตราส่วนโดยโมลที่ต่างกัน

- (a) TEOS : H₂O : HCI : C₂H₆O เท่ากับ 1 : 2 : 0.01 : 12.7
- (b) TEOS : H₂O : HCl : C₂H₆O เท่ากับ 1 : 2 : 0.01 : 2

ตาราง 4 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ได้จากการเตรียมสารละลายในอัตราส่วนโดยโมล ที่ต่างกัน

อัตราส่วนของสารละลาย			
TEOS:H ₂ O:HCI:C ₂ H ₆ O	1:2:0.01:12.7	1:2:0.01:2	
เส้นผ่านศูนย์กลางเส้นใย ซิลิกา (nm)	613 ± 141	417 ± 84	

ผลการศึกษาปัจจัยในกระบวนการปั้นด้วยไฟฟ้าสถิต ระยะห่างระหว่างปลายเข็ม กับแผ่นรองรับเส้นใย และความต่างศักย์ไฟฟ้า

ในการศึกษาปัจจัยในกระบวนการปั่นด้วยไฟฟ้าสถิตได้ใช้สารละลายที่มีอัตราส่วน TEOS : H₂O : HCI : C₂H₆O เท่ากับ 1 : 2 : 0.01 : 2 ปัจจัยที่ต้องการศึกษา คือ ระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใย และ ความต่างศักย์ไฟฟ้า เพื่อศึกษาผลของระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใย ได้ปรับระยะห่างระหว่าง ปลายเข็มกับแผ่นรองรับเส้นใย ดังนี้ 15 20 และ 25 เซนติเมตร และเพื่อศึกษาผลของความต่างศักย์ไฟฟ้า ได้ปรับ ค่าความต่างศักย์ไฟฟ้า เป็น 13 15 17 19 และ 21กิโลโวลต์ จากตัวแปรที่เลือกจะได้เส้นใยซิลิกาทั้งหมด 15 ชุด

ผลของความต่างศักย์ไฟฟ้า จากการวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด พบว่าที่ ความต่างศักย์ 13 กิโลโวลต์ เส้นใยที่ได้จะเป็นเส้นไม่ต่อเนื่องและมีเม็ดลูกบัดปนอยู่กับเส้นใย ทำให้เส้นใยมี ลักษณะไม่เรียบ ดังภาพประกอบ 15(a-c) เส้นใยซิลิกาที่ได้จากการปรับค่าความต่างศักย์ไฟฟ้า 15 17 19 และ21 กิโลโวลต์ ลักษณะทางกายภาพของเส้นใยซิลิกามีความเรียบสม่ำเสมอและเป็นเส้นยาวต่อเนื่องมากขึ้น ความต่าง ศักย์มีผลอย่างชัดเจนต่อสัณฐานของเส้นใย คือ เมื่อความต่างศักย์น้อยเกินไป (13 กิโลโวลต์) เส้นใยจะไม่ต่อเนื่อง และมีลักษณะไม่เรียบ ที่ความต่างศักย์มากพอเส้นใยจะเป็นเส้นยาวต่อเนื่อง ดังภาพประกอบ 15 - 19 อย่างไรก็ ตามในแง่ของขนาดเส้นใยที่ได้ไม่มีแนวโน้มของการเปลี่ยนแปลงกับความต่างศักย์อย่างชัดเจน ดังข้อมูลใน ตาราง 4 ซึ่งแสดงค่าเฉลี่ยขนาดของเส้นผ่านศูนย์กลางของเส้นใยซิลิกา

ผลของระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใย พบว่าการเปลี่ยนระยะห่าง ณ ค่าความต่างศักย์ หนึ่งๆ ไม่ส่งผลต่อรูปแบบสัณฐานของเส้นใย เช่นที่ 13 กิโลโวลต์ สำหรับระยะห่างทั้งสามระยะ เส้นใยมีลักษณะไม่ ต่อเนื่องเหมือนกัน สำหรับขนาดของเส้นใยพบว่าเมื่อระยะห่างมากขึ้นไม่มีแนวโน้มของการเปลี่ยนแปลงกับ ระยะห่างอย่างชัดเจน

ผลของความต่างศักย์ไฟฟ้าและระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใย ที่มีต่อขนาด เส้นผ่านศูนย์กลางของเส้นใย แสดงข้อมูลดังภาพประกอบ 20-23

- (a) 13 kV 15 เซนติเมตร
- (b) 13 kV 20 เซนติเมตร
- (c) 13 kV 25 เซนติเมตร

ภาพประกอบ 15 แสดงลักษณะทางกายภาพของเส้นใยซิลิกาที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิต

ที่ใช้ความต่างศักย์ไฟฟ้า 13 กิโลโวลต์ 🔍 🔍 🛛

- (a) 15 kV 15 เซนติเมตร
- (b) 15 kV 20 เซนติเมตร 👘 (c) 15 kV 25 เซนติเมตร

ภาพประกอบ 16 แสดงลักษณะทางกายภาพของเส้นใยซิลิกาที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิต 0000

ที่ใช้ความต่างศักย์ไฟฟ้า 15 กิโลโวลต์

ภาพประกอบ 17 แสดงลักษณะทางกายภาพของเส้นใยซิลิกาที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิต ที่ใช้ความต่างศักย์ไฟฟ้า 17 กิโลโวลต์

•.

(a) 19 kV 15 เซนติเมตร

(c) 19 kV 25 เซนติเมตร

.*

ภาพประกอบ 18 แสดงลักษณะทางกายภาพของเส้นใยซิลิกาที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิต ที่ใช้ความต่างศักย์ไฟฟ้า 19 กิโลโวลต์

(b) 21 kV 20 เซนติเมตร (c) 21 kV 25 เซนติเมตร

(a) 21 kV 15 เซนติเมตร

ภาพประกอบ 19 แสดงลักษณะทางกายภาพของเส้นใยซิลิกาที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิต ที่ใช้ความต่างศักย์ไฟฟ้า 21 กิโลโวลต์ .

ตาราง 5 แสดงขนาดเส้นผ่านศูนย์กลางเฉลี่ยของเส้นใยซิลิกาในหน่วยไมโครเมตร (nm) ที่ทำการปรับ ระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใย และความต่างศักย์

			- 2		_
	15 kV	17 kV	19 kV	21 kV	_
15cm	325 ± 64	335 ± 64	365 ± 104	381 ± 101	_
20cm	381 ± 93	342 ± 82	323 ± 63	362 ± 143	
25cm	378 ± 80	408 ± 82	364 ± 85	449 ± 93	

ภาพประกอบ 20 แสดงขนาดเส้นผ่านศูนย์กลางเฉลี่ยของเส้นใยซิลิกา ที่ได้จากกระบวนการปั่นด้วยไฟฟ้า

สถิตโดยใช้ระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใยเป็น 15 cm

ภาพประกอบ 21 แสดงขนาดเส้นผ่านศูนย์กลางเฉลี่ยของเส้นใยซิลิกา ที่ได้จากกระบวนการปั่นด้วยไฟฟ้า สถิตโดยใช้ระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใยเป็น 20 cm

ภาพประกอบ 22 แสดงขนาดเส้นผ่านศูนย์กลางเฉลี่ยของเส้นใยซิลิกา ที่ได้จากกระบวนการปั่นด้วยไฟฟ้า

สถิตโดยใช้ระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใยเป็น 25 cm

ภาพประกอบ 23 แสดงขนาดเส้นผ่านศูนย์กลางเฉลี่ยรวมของเส้นใย ที่ได้จากกระบวนการปั่นด้วยไฟฟ้า สถิตที่มีการปรับค่าความต่างศักย์และระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใย ดังข้อมูลใน ตาราง 5

3. ผลการวิเคราะห์ทางความร้อน

การวิเคราะห์ทางความร้อนของเส้นใยซิลิกาที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิต เพื่อวิเคราะห์ความ เสถียรทางความร้อนของเส้นใยซิลิกา เพื่อเลือกอุณหภูมิที่เหมาะสมในการเผาแคลไซน์ โดยเลือกใช้เส้นใยซิลิกา ที่ได้จากการปั่นด้วยไฟฟ้าสถิต ชุดที่ใช้ระยะห่างระหว่างปลายเข็มกับแผ่นรองรับเส้นใย 15 เซนติเมตร ความต่าง ศักย์ไฟฟ้า 15 กิโลโวลต์ เนื่องจากเป็นชุดเส้นใยซิลิกาที่ผลิตออกมาได้ในปริมาณที่มาก การวิเคราะห์ทำโดยใช้ เครื่องเทอร์มอล กราวิเมตริก อนาไลซิส (TGA) และเครื่องดิฟเฟอเรนเซียล เทอร์มอล อนาไลซิส (DTA)

ผลจากการวิเคราะห์ด้วยเครื่อง TGA ในช่วงอุณหภูมิ 30 - 1400 องศาเซลเซียส แสดงให้เห็นดัง ภาพประกอบ 24 พบว่าน้ำหนักของเส้นใยซิลิกาลดลงสองช่วง ช่วงแรกที่อุณหภูมิ 28.3-205 องศาเซลเซียส มวลที่ ลดลงประมาณ 11.48 wt% ช่วงที่สองที่อุณหภูมิตั้งแต่ 205 องศาเซลเซียส เป็นต้นไป มวลค่อยๆลดลงประมาณ 6.35 wt% ในช่วงแรกมวลที่ลดลงเป็นผลจากการระเหยออกของโมเลกุลขนาดเล็กที่ค้างอยู่ เช่น น้ำ แอลกอฮอล์ ช่วงที่สองเป็นผลเนื่องจากการสลายตัวขององค์ประกอบภายในเส้นใยซิลิกาซึ่งมวลลดลงไม่มากนัก จากกราฟพบ การลดลงของน้ำหนักเส้นใยซิลิกาเริ่มคงตัว ในช่วงอุณหภูมิตั้งแต่ 200 องศาเซลเซียส ขึ้นไป

สำหรับผลการวิเคราะห์ด้วยเครื่อง DTA ในช่วงอุณหภูมิ 30-1400 องศาเซลเซียสดังภาพประกอบ 25 ปรากฏพีคพุ่งลงที่บริเวณอุณหภูมิ 140.3 องศาเซลเซียส และ 940.3 องศาเซลเซียส แสดงกระบวนการดูด ความร้อน (Endothermic) ในจุดแรกเกี่ยวเนื่องกับการสลายตัวของโมเลกุลขนาดเล็กที่ตกค้างภายในเส้นใยซิลิกา ซึ่งสอดคล้องกับผลการวิเคราะห์ด้วยเครื่อง TGA ในจุดที่สองเกี่ยวเนื่องกับการสลายตัวขององค์ประกอบภายใน เส้นใยซิลิกา และการเปลี่ยนเฟสของซิลิกา ซึ่งผลึกของซิลิกา มี 3 รูปแบบ คือ ควอต์ช (Quartz) เสถียรที่อุณหภูมิ ต่ำกว่า 870 องศาเซลเซียส ไตรดีไมต์ (Tridymite) เสถียรที่อุณหภูมิประมาณ 870-1470 องศาเซลเซียส และคริสโตบาไลต์ (Cristobalite) เสถียรที่อุณหภูมิ 1470 ถึงจุดหลอมเหลวที่ประมาณ 1723 องศาเซลเซียส ในช่วง อุณหภูมิ 870-1400 องศาเซลเซียส ระบบค่อนข้างคงที่มีการเปลี่ยนแปลงเพียงเล็กน้อย ดังภาพประกอบ 25 ผลจากการวิเคราะห์ด้วยเครื่องTGA และDTA ทำให้สามารถเลือกอุณหภูมิที่ใช้ในการเผาแคลไซน์ คือ เป็นช่วงที่ มากกว่า 200 องศาเซลเซียส โดยอุณหภูมิที่เลือกใช้ในการเผาแคลไซน์เส้นใยซิลิกา คือ 400 600 800 และ1000 องศาเซลเซียส เนื่องจากเป็นช่วงอุณหภูมิที่เส้นใยซิลิกามีความเสถียรทางความร้อน และระบบค่อนข้างคงที่

ภาพประกอบ 24 กราฟผลการวิเคราะห์ทางความร้อนด้วยเครื่องเทอร์มอล กราวิเมตริก อนาไลซิส(TGA) สำหรับ เส้นใยซิลิกาที่ปั่นได้ ด้วยกระบวนการปั่นด้วยไฟฟ้าสถิต ที่ใช้ความต่างศักย์ 15 กิโลโวลต์ และระยะห่าง ระหว่างปลายเข็มกับแผ่นรองรับเส้นใย 15 เซนติเมตร

۰

٠

·•••

ø

ภาพประกอบ 25 กราฟผลการวิเคราะห์ทางความร้อนด้วยเครื่องดิฟเฟอเรนเซียล เทอร์มอล อนาไลซิส (DTA) สำหรับเส้นใยซิลิกาที่ปั่นได้ด้วยกระบวนการปั่นด้วยไฟฟ้าสถิตที่ใช้ความต่างศักย์ 15 กิโลโวลต์ และระยะห่าง ระหว่างปลายเข็มกับแผ่นรองรับเส้นใย 15 เซนติเมตร

۰ ۰

4. ผลของอุณหภูมิในการเผาที่มีต่อลักษณะทางกายภาพ องค์ประกอบและโครงสร้าง ผลึกของเส้นใยซิลิกา

การวิเคราะห์ด้วยเครื่อง TGA และ DTA ทำให้สามารถเลือกช่วงอุณหภูมิในการเผาแคลไซน์ได้ ดังนี้ คือ 400 600 800 และ1000 องศาเซลเซียส เมื่อเผาแคลไซน์เส้นใยซิลิกาด้วยอุณหภูมิดังกล่าวแล้ว ได้นำเส้น ใยซิลิกาไปวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) เครื่องฟูเรียร์ทรานส์ฟอร์ม อินฟราเรด สเปกโตรสโคปี (FTIR) และเครื่องเอกซ์เรย์ ดิฟแฟรคชัน (XRD)

4.1 ผลการวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด

000000

การวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด แสดงให้เห็นลักษณะทางกายภาพ และ ขนาดเส้นผ่านศูนย์กลางของเส้นใยซิลิกา พบว่าก่อนเผาและหลังเผาแคลไซน์ลักษณะของเส้นใยซิลิกาไม่มีการ เปลี่ยนแปลงยังคงมีความเรียบเป็นเส้นยาวและมีความต่อเนื่องเหมือนเดิม แสดงดังภาพประกอบ 26 และขนาด เส้นผ่านศูนย์กลางโดยเฉลี่ยของเส้นใยซิลิกาก่อนเผาและหลังเผาแคลไซน์มีขนาดใกล้เคียงกัน แสดงดังตาราง 6 ดังนั้นอุณหภูมิในการเผาแคลไซน์จึง ไม่มีผลต่อการเปลี่ยนแปลงลักษณะทางกายภาพ และขนาดเส้นผ่าน ศูนย์กลางของเส้นใยซิลิกา

อย่างไรก็ตามแผ่นเส้นใยซิลิกามีลักษณะกรอบขึ้นเล็กน้อยภายหลังการเผาแคลไซน์ เนื่องจากการระเหย ของโมเลกุลขนาดเล็กและความชื้นจากระบบ

ภาพประกอบ 26 ลักษณะเส้นใยซิลิกาที่ไม่ได้ผ่านการเผาแคลไซน์ (a) และเส้นใยซิลิกาที่ผ่านการ เผาแคลไซน์ด้วยอุณหภูมิ 400 (b) 600 (c) 800 (d) และ1000 องศาเซลเซียส (e)

ตาราง 6 ขนาดเส้นผ่านศูนย์กลางเฉลี่ยของเส้นใยซิลิกาก่อนและหลังเผาแคลไซน์ที่อุณหภูมิต่างๆ

ั้วรินทร์					
อุณหภูมิการ เผาแคลไซน์ (^{°c)}	ไม่ได้เผา	400	600	800	1000
ขนาดเส้นผ่าน ศูนย์กลาง (nm)	321±95	347±103	353±88	328±91	325±65

4.2 ผลการวิเคราะห์ด้วยเครื่องฟูเรียร์ทรานส์ฟอร์ม อินฟราเรด สเปกโตรสโคปี

เส้นใยซิลิกาที่ไม่ได้ผ่านการเผาแคลไซน์ และที่ผ่านการเผาแคลไซน์ที่อุณหภูมิทั้ง 4 ถูกนำไปวิเคราะห์ด้วย เครื่องฟูเรียร์ทรานส์ฟอร์ม อินฟราเรด สเปกโตรลโคปี เพื่อวิเคราะห์หาหมู่ฟังก์ชัน และพันธะในเส้นใยซิลิกาFTIR สเปคตรัมของเส้นใยซิลิกาที่ไม่ได้เผาแคลไซน์ ดังภาพประกอบ 27 (a) ปรากฏพีคแคบที่ 489 cm⁻¹ และ 1138 cm⁻¹ สอดคล้องกับหมู่ฟังก์ชันและพันธะของ Si - O และ SiO₄ พีคเล็กๆที่ 1650 cm⁻¹ สอดคล้องกับกลุ่มของสารอินทรีย์ CH CH, CH, และ น้ำ (H,O) และพีคกว้างในช่วง 3460 - 3480 cm⁻¹ สอดคล้องกับกลุ่มไฮดรอกซิล OH

FTIR สเปคตรัมของเส้นใยชิลิกาที่แกแคลไซน์ ด้วยอุณหภูมิ 400 600 800 และ1000 องศาเซลเซียส ดังภาพประกอบ 27 (b-e) พบพีคที่ตำแหน่งเลขคลื่นตรงกันและตรงกันกับหมู่ฟังก์ชันและพันธะของ Si - O และ SiO₄ กลุ่มของสารอินทรีย์และกลุ่มไฮดรอกซิล แต่ที่ตำแหน่งพีคกว้างในช่วง 3460 - 3480 cm⁻¹ และพีคเล็กๆที่ 1650 cm⁻¹ ความลึกของพีคจะค่อยๆลดลงตามอุณหภูมิที่เพิ่มสูงขึ้น ส่วนพีคแคบที่ 489 cm⁻¹ และ 1138 cm⁻¹ ความเข้มของพีคเก่า เดิมไม่ลดลง แสดงว่าอุณหภูมิในการแกแคลไซน์มีผลต่อหมู่ฟังก์ชันและพันธะของกลุ่มสารอินทรีย์ CH CH₂ CH₃ และ H₂O และกลุ่มไฮดรอกซิล OH ในเส้นใยชิลิกา คือทำให้มีปริมาณลดลงเมื่ออุณหภูมิที่ใช้ในการแกแคลไซน์เพิ่มขึ้น สอดคล้องกับผลของ TGA และ DTA ผลของ FTIR สเปกตรัม ส่วนของซิลิกาไม่ได้ลดลงเมื่ออุณหภูมิเพิ่มขึ้น ดังนั้น แสดงให้เห็นว่าอุณหภูมิในการแกแคลไซน์ที่สูงขึ้นทำให้เส้นใยซิลิกามีสัดส่วนของซิลิกามากขึ้น

ภาพประกอบ 27 FTIR spectra ของเส้นใยซิลิกา (a) เส้นใยที่ไม่ได้เผาแคลไซน์ (b) เส้นใยที่เผาแคลไซน์ 400° (c) เส้นใยที่เผาแคลไซน์ 600°c (d) เส้นใยที่เผาแคลไซน์ 800°c (e) เส้นใยที่เผาแคลไซน์ 1000°c

ปี พ.ศ. 2546 (ค.ศ. 2003) ชอย และคนอื่นๆ (Choi; et al. 2003: 891-893) ได้ศึกษาและผลิต เส้นใยนาโนซิลิกา ด้วยกระบวนการปั่นด้วยไฟฟ้าสถิตและเทคนิคโซลเจล (Sol-gel) ในการเตรียมสาร ตั้งต้น ผู้วิจัยใช้สารตั้งต้น คือ เตตระเอทิลออโทซิลิเคต (TEOS) เอทิลแอลกอฮอล์ (C₂H₆O) น้ำกลั่น (H₂O) และกรดไฮโดรคลอริค (HCl) ในอัตราส่วนโดยโมล เท่ากับ 1:2:2:0.01 ซอย และคณะ ได้วิเคราะห์หาหมู่ ฟังก์ชันและพันธะในเส้นใยซิลิกาด้วยเครื่อง FTIR ผลที่ได้ คือ ปรากฏพีคที่ตรงตำแหน่งเลขคลื่นที่ตรงกับ หมู่ฟังก์ชันและพันธะของ Si-O กลุ่มของสารอินทรีย์และกลุ่มไฮดรอกซิล ซึ่งมีผลเหมือนกันกับงานวิจัยครั้ง นี้ และในงานวิจัยของ ซอย และคณะ ยังทำให้ทราบว่าที่ความต่างศักย์ไฟฟ้าต่างกัน ก็ปรากฏพีคที่มี ลักษณะเหมือนกัน แต่งานวิจัยของชอย และคณะ ไม่ได้ทำการเผาแคลไซน์เส้นใยซิลิกา เพื่อเปรียบเทียบ ผลของอุณหภูมิในการเผาแคลไซน์ที่มีผลต่อหมู่ฟังก์ชันและพันธะในเส้นใยซิลิกา

4.3 ผลการวิเคราะห์ด้วยเครื่องเอกซเรย์ ดิฟแฟรคชัน

ศึกษาโครงสร้างผลึกของเส้นใยซิลิกา ด้วยเครื่องเอกซเรย์ ดิฟแฟรคชัน ภาพประกอบ 28-32 แสดงให้เห็นผล การวิเคราะห์เอกซเรย์ดิฟแฟรคชัน ในเส้นใยซิลิกาที่ไม่ได้ผ่านการเผาแคลไซน์และที่ผ่านการเผาแคลไซน์ที่อุณหภูมิ 400 600 800 1000 องศาเซลเซียส พบว่า กราฟที่ได้มีลักษณะเป็นพีคกว้างสอดคล้องกับลักษณะโครงสร้างแบบ อสัณฐาน (Amorphous) พีคขนาดเล็กที่ปรากฏ ณ ตำแหน่ง 20 เท่ากัน คือ 38 และ 45 เป็นพีคของแป้นวางตัวอย่างซึ่ง เป็นอะลูมิเนียม (AI) ตัวอย่างที่ผ่านการเผาแคลไซน์ ที่อุณหภูมิต่างๆ ล้วนให้ผลในลักษณะเดียวกัน จึงสรุปได้ว่า จาก การเผาแคลไซน์ช่วง 400 - 1000 องศาเซลเซียส เส้นใยซิลิกาคงลักษณะโครงสร้างแบบอสัณฐาน เรียกว่า ซิลิกาชนิด อสัณฐาน (Amorphous Silica) และไม่พบพีคที่แสดงระนาบผลึกซิลิกา ดังนั้นอุณหภูมิในการเผาแคลไซน์ในช่วงที่ทำ การทดลองนี้จึงไม่มีผลต่อโครงสร้างผลึกของเส้นใยซิลิกา

ปี พ.ศ. 2546 (ค.ศ. 2003) ชอย และคนอื่นๆ (Choi; et al. 2003: 891-893) ได้ศึกษาและผลิต เส้นใยนาโนซิลิกา ด้วยกระบวนการบั่นด้วยไฟฟ้าสถิตและเทคนิคโซลเจล (Sol-gel) ในการเตรียมสาร ตั้งต้น ผู้วิจัยใช้สารตั้งต้น คือ เตตระเอทิลออโทซิลิเคต (TEOS) เอทิลแอลกอฮอล์ (C₂H₆O) น้ำกลั่น (H₂O) และ กรดไฮโดรคลอริค (HCl) ในอัตราส่วนโดยโมล เท่ากับ 1 : 2 : 2 : 0.01 ซอย และคณะ ได้วิเคราะห์ ความเป็นผลึกของเส้นใยซิลิกา ด้วยเครื่อง XRD พบว่า เส้นใยซิลิกาแสดงลักษณะโครงสร้างแบบอสัณฐาน (Amorphous Silica) และแสดงลักษณะโครงสร้างเดียวกันสำหรับตัวอย่างอื่นที่ใช้ความต่างศักย์ต่างๆกัน ซึ่งมีผลเหมือนกันกับงานวิจัยครั้งนี้

ภาพประกอบ 28 XRD pattern ของเส้นใยซิลิกาที่ไม่ได้เผาแคลไซน์

65

ภาพประกอบ 29 XRD pattern ของเส้นใยซิลิกาที่เผาแคลไซน์ 400 องศาเซลเซียส

ภาพประกอบ 30 XRD pattern ของเส้นใยซิลิกาที่เผาแคลไซน์ 600 องศาเซลเซียส

ภาพประกอบ 31 XRD pattern ของเส้นใยซิลิกาที่เผาแคลไซน์ 800 องศาเซลเซียส

ภาพประกอบ 32 XRD pattern ของเส้นใยซิลิกาที่เผาแคลไซน์ 1000 องศาเซลเซียส

บทที่ 5 สรุปและอภิปรายผล

งานวิจัยในครั้งนี้ได้ทำการผลิตและวิเคราะห์เส้นใยซิลิกาที่ได้จากกระบวนการปั่นด้วยไฟฟ้าสถิต และการเผาแคลไซน์ในการผลิตเส้นใยซิลิกาด้วยกระบวนการปั่นด้วยไฟฟ้าสถิตได้ทำการศึกษาปัจจัย เกี่ยวกับความต่างศักย์ไฟฟ้าและระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ โดยความต่างศักย์ ที่ เลือกใช้ คือ 13 15 17 19 และ 21 กิโลโวลต์ ระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ที่เลือกใช้ คือ 15 20 และ 25 เซนติเมตร ที่ความต่างศักย์ 13 กิโลโวลต์ เส้นใยที่ผลิตได้มีลักษณะเป็นเม็ด ลูกปัดปน ในเส้นใยซิลิกาทำให้เส้นใยมีลักษณะไม่เรียบ สำหรับที่ความต่างศักย์ 15-21 กิโลโวลต์ เส้นใยมีลักษณะ เรียบและเป็นเส้นยาวต่อเนื่อง โดยขนาดเส้นผ่านศูนย์กลางของเส้นใยไม่มีแนวโน้มการเปลี่ยนแปลงอย่าง ชัดเจน เมื่อระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์และค่าความต่างศักย์มากขึ้น

การวิเคราะห์ทางความร้อนได้ทำการวิเคราะห์ด้วยเครื่อง TGA และ DTA ในช่วงอุณหภูมิ 30-1400 องศาเซลเซียส โดยได้เลือกซุดเส้นใยซิลิกาที่ได้จากการปั่นด้วยไฟฟ้าสถิตที่ใช้ความต่างศักย์ 15 กิโลโวลต์ และระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ 15 เซนติเมตร ผลการวิเคราะห์ด้วย TGA พบว่า น้ำหนักของเส้นใยลดลงเนื่องจากการระเหยออกของโมเลกุลขนาดเล็กที่ตกค้างอยู่ เช่น น้ำ แอลกอฮอล์ และการสลายตัวขององค์ประกอบภายในเส้นใยซิลิกา และน้ำหนักของเส้นใยเริ่มคงตัวในช่วง อุณหภูมิตั้งแต่ 200 องศาเซลเซียสขึ้นไป

สำหรับผลการวิเคราะห์ด้วย DTA แสดงกระบวนการดูดความร้อนในบริเวณอุณหภูมิ 140.3 และ 940.3 องศาเซลเซียส ซึ่งเกี่ยวเนื่องกับการสลายตัวของโมเลกุลขนาดเล็กที่ตกค้างภายในเส้นใยซิลิการวมถึง การสลายตัวขององค์ประกอบภายในเส้นใยซิลิกาและการเปลี่ยนเฟสของซิลิกา ผลจากการวิเคราะห์ด้วย TGA และ DTA ทำให้เลือกอุณหภูมิที่ใช้ในการเผาแคลไซน์เส้นใยซิลิกา คือ 400 600 800 และ1000 องศา เซลเซียส

จากการศึกษาผลของอุณหภูมิในการเผาแคลไซน์เส้นใยซิลิกาที่มีต่อลักษณะทางกายภาพ องค์ประกอบ และโครงสร้างผลึกของเส้นใยซิลิกา พบว่า อุณหภูมิที่ใช้ในการเผาแคลไซน์นั้นไม่มีผลต่อ ลักษณะทางกายภาพและขนาดเส้นผ่านศูนย์กลางของเส้นใยทั้งก่อนเผาและหลังเผาแคลไซน์ลักษณะของ เส้นใยซิลิกาไม่มีการเปลี่ยนแปลงยังคงมีความเรียบเป็นเส้นยาวและมีความต่อเนื่องเหมือนเดิม และขนาด เส้นผ่านศูนย์กลางของเส้นใยก็มีขนาดไม่เปลี่ยนแปลงมากนัก

ผลจากการวิเคราะห์หมู่ฟังก์ชันของเส้นใยซิลิกาด้วยเครื่องฟูเรียร์ ทรานส์ฟอร์ม อินฟราเรด สเปกโตรสโคปี พบว่า อุณหภูมิในการเผาแคลไซน์มีผลต่อหมู่ฟังก์ชันและพันธะของกลุ่มสารอินทรีย์และ กลุ่มไฮดรอกซิล คือ ทำให้ปริมาณลดลงสอดคล้องกับผล TGA และ DTA ซึ่งแสดงให้เห็นว่าอุณหภูมิในการ เผาแคลไซน์ที่สูงขึ้นทำให้เส้นใยซิลิกามีความเป็นซิลิกามากขึ้น

ผลจากการวิเคราะห์โครงสร้างผลึกด้วยเครื่องเอกซ์เรย์ ดิฟแฟรคชัน พบว่าเส้นใยที่ไม่ได้ผ่านการ เผาแคลไซน์และที่ผ่านการเผาแคลไซน์ ไม่พบพีคที่แสดงระนาบผลึกซิลิกา จากข้อมูลทำให้ทราบว่าเส้นใย ซิลิกามีโครงสร้างแบบอสัณฐาน ดังนั้นอุณหภูมิในการเผาแคลไซน์ในช่วงที่ทำการทดลองนี้ไม่มีผลต่อ โครงสร้างผลึกของเส้นใยซิลิกา

ข้อเสนอแนะ

การศึกษาผลของอุณหภูมิในการเผาแคลไซน์อาจเพิ่มอุณหภูมิในการเผาให้สูงขึ้นอีกได้ เพื่อที่จะ ได้ศึกษาว่าอุณหภูมิสูงกว่าช่วงการทดลองนี้ จะมีผลต่อการเปลี่ยนแปลงโครงสร้างผลึกของเส้นใยซิลิกา และลักษณะทางกายภาพของเส้นใยซิลิกาอย่างไร ในงานวิจัยต่อไปอาจทำการศึกษาการประยุกต์ใช้ เส้นใยในงานต่างๆเพิ่มเติมได้

บรรณานุกรม

้กิตติพงศ์ ยิ่งธเนศ; และชัชวาล สุขมั่น. (2550). การสังเคราะห์อนุภาคซิลิกาด้วยเทคนิคโซล-เจล.

การประชุมวิชาการวิศวกรรมเคมีและเคมีประยุกต์แห่งประเทศไทย. ครั้งที่ 17: หน้า 1-2. จันทิรา ชัยมงคล. (2525). อนินทรีย์เคมี ทฤษฎีและโครงสร้าง. กรุงเทพฯ: ปริ้นติ้ง เฮาส์. ชัยรัฒน์ เจนวาณิชย์. (2525). สารานุกรมธาตุ. กรุงเทพฯ: ปริ้นติ้ง เฮาส์.

ไชยยันต์ ไชยยะ; และภาวิณี สายอุดม. (2548). การสังเคราะห์เส้นใยซิลิกาโดยซิลิกาโดยวิธี โซล-เจล

โดยใช้เทคนิคอิเล็กโทรสปินนิง. การประชุมวิชาการวิศวกรรมเคมีและเคมีประยุกต์แห่งประเทศ ไทย. ครั้งที่ 15: หน้า 1-5.

นิพนธ์ ตั้งคณานุรักษ์; และคณิตา ตั้งคณานุรักษ์. (2547). *สเปกโตรสโคปีด้านการวิเคราะห์*. กรุงเทพฯ: มหาวิทยาลัยเกษตรศาสตร์.

เบณจวรรณ ชัยเชื้อ; ภัทรพรรณ ประศาสน์สารกิจ; และศิริลักษณ์ พุ่มประดับ. (2551). ยางธรรรมชาติ เสริมแรงโดยอินซิทูซิลิกา*. การประชุมวิชาการทางวิศวกรรมศาสตร์* มหาวิทยาลัยสงขลานครินทร์. ครั้งที่ 6: หน้า 589-592.

- แม้น อมรสิทธิ์; และคนอื่นๆ. (2553). หลักการและเทคนิคการวิเคราะห์เชิงเครื่องมือ. กรุงเทพฯ: ชวนพิมพ์. วีระศักดิ์ อุดมกิจเดชา; และคนอื่นๆ. (2543). เครื่องมือวิจัยทางวัสดุศาสตร์: ทฤษฎีและหลักการ ทำงานเบื้องต้น. กรุงเทพฯ: จุฬาลงกรณ์มหาวิทยาลัย.
- Campbell, D.; et al. (2000). *Polymer Characterization Physical Techniques*. United Kingdom: Stanley Thornes.
- Choi, Sung-Seen; et al. (2003). Silica Nanofibers from Electrospinning/Sol-gel Process. Journal of Materials Science Letters .22: pp. 891-893.
- Ding, Yanhuai; et al. (2009). Mechanical Properties of Nylon-6/SiO₂ Nanofibers Prepared by Electrospinning. *Materials Letters*. 63: pp. 34-36.

- Huang, Zheng Ming; et al. (2003). A Review on Polymer Nanofibers by Electrospinning and their Applications in Nanocomposites. *Composites Science and Techonlogy*.
 63: 2223-2253.
- limura, Kenji; et al. (2010). Preparation of Silica Fibers and Non-woven Cloth by Electrospinning. *Advanced Powers Technology*. 21: 64-68.
- Krissanasaeranee, Methira; et al. (2008). Preparation of Ultra-Fine Silica Fibers Using Electrospun Poly(Vinyl Alcohol)/Silatrane Composite Fibers as Precusor. *The American Ceramic Society*. 91 [9]: 2830-2835.
- Lee, Sung Wook; et al. (2007). Preparation of SiO₂/TiO₂ Composite Fibers by Sol-gel Reaction and Electrospinning. *Materials Letters*. 61: 889-893.
- Rutledge, Gregory C.; & Fridrikh, Sergey V. (2007). Formation of Fibers by Electrospinning. Advance Drug Delivery Reviews. 59: 1384-1391.
- Sandler, S. R.; et al. (1998). *Polymer Synthesis and Characterization*. USA: Academic Press.
- Shao, Changlu; et al. (2003). Fiber Mats of Poly(Vinyl Alcohol)/Silica Composite via Electrospinning. *Materials Letters*. 57: 1579-1584.
- Thuambangphai, Unchalee; & Varanusupakul, Puttaruksa. (2009). Preparation of Aminopropyl Functionalized Silica Fibers by Electrospinning. *Congress on Science and Technology of Thailand*. 35: 1-6.
- Zhang, G.; et al. (2005). Electrospun Nanofibers for Potential Space-Based Aapplications. *Materials Science and Engineering B.* 116: 353-358.

ภาคผนวก ก ตารางแสดงผลการวัดขนาดเส้นผ่านศูนย์กลางของเส้นใยชิลิกาที่ได้จากภาพที่ได้จากกล้อง

จุลทรรศน์อิเล็กตรอนแบบส่องกราด

0 ۰

0

0

0

٠

0.0

ø

٠

.

ø

ตารางแสดงผลการวัดขนาดเส้นผ่านศูนย์กลางของเส้นใยซิลิกาที่ได้จากภาพ ที่ได้จากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด

เส้นใยซิลิกาแต่ละชุด ผลิตจากกระบวนการปั่นด้วยไฟฟ้าสถิตโดยใช้ ความต่างศักย์ 13 15 17 19 และ 21 kV และ กำหนดระยะห่างระหว่างปลายเข็มกับแผ่นตาข่ายแกรไฟต์ ดังนี้ 15 20 และ 25 cm นำมาวัดขนาดเส้นผ่านศูนย์กลางของเส้นใยโดยการคำนวณจากจุดภาพ (pixel) ทั้งหมด 50 ตำแหน่ง ต่อ 1 ภาพ โดยค่าที่ได้จะเป็นขนาดเส้นผ่านศูนย์กลางของเส้นใย ที่มีหน่วยเป็นพิกเซล (R) เมื่อได้ขนาดเส้น ผ่านศูนย์กลางของเส้นใยในหน่วยพิกเซล เราสามารถคำนวณหาขนาดเส้นผ่านศูนย์กลางของเส้นใยใน หน่วยไมโครเมตร (R_{รัง}) ได้จากการเทียบบัญญัติไตรยางศ์ นำขนาดเส้นผ่านศูนย์กลางของเส้นใยในหน่วย ไมโครเมตรทั้ง 50 ค่า มาหาค่าเฉลี่ยขนาดเส้นผ่านศูนย์กลางของเส้นใยลำหรับ 1 ภาพ

การคำนวณขนาดเส้นผ่านศูนย์กลางของเส้นใยจากภาพ คำนวณได้จากพิกัดของจุดภาพ ดังสมการต่อไปนี้

$$R = \sqrt{(X_1 - X_2)^2 + (Y_1 - Y_2)^2}$$

ค่าเฉลี่ยขนาดเส้นผ่านศูนย์กลางของเส้นใย คำนวณได้จากสูตร ดังนี้ ค่าเฉลี่ย = ค่า R_{จริง} รวม / จำนวน R_{จริง}

โดย X1 X2 Y1 Y2 คือ พิกัดของแต่ละพิกเซลที่สอดคล้องกับตำแหน่งในการหาขนาดของ เส้นใยหนึ่งๆ

X ₁	Y ₁	X ₂	Y ₂	R	R _{ຈຈີ} າ
388	277	440	323	69.426	0.771
482	392	491	434	42.953	0.477
700	188	682	260	74.216	0.825
682	297	632	326	57.801	0.642
696	446	665	485	49.820	0.554
683	609	690	674	65.376	0.726
913	468	946	513	55.803	0.620
993	194	1037	180	46.174	0.513
1234	330	1213	401	74.041	0.823
1174	551	1183	615	64.630	0.718
553	231	520	273	53.413	0.593
508	325	544	369	56.851	0.632
323	574	307	639	66.940	0.744
833	398	890	388	57.871	0.643
916	330	908	282	48.662	0.541
916	330	908	282	48.662	0.541

59.228

45.618

71.868

44.777

53.263

56.223

74.148

86.683

63.063

0.658

0.507

0.799

0.498

0.592

0.625

0.824

0.963

0.701

ตาราง 7 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ใช้สารละลายที่มีอัตราส่วนโดยโมลของ

TEOS · H O · HCI ·	CHO = 1	1 • 2 • 0 01	· 12 7
	$U_2 U_6 U = 1$	I.Z.U.U.	. 12.7

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	942	364	952	409	46.098	0.512
27	1022	299	1061	316	42.544	0.473
28	911	520	950	537	42.544	0.473
29	1000	604	1046	651	65.765	0.731
30	1134	548	1181	533	49.336	0.548
31	836	224	881	224	45.000	0.500
32	1054	194	1094	244	64.031	0.711
33	975	347	1007	402	63.632	0.707
34	1135	378	1165	369	31.321	0.348
35	888	522	978	540	91.782	1.020
36	881	549	838	549	43.000	0.478
37	392	524	422	573	57.454	0.638
38	619	375	630	427	53.151	0.591
39	619	499	677	533	67.231	0.747
40	800	271	840	283	41.761	0.464
41	728	517	768	528	41.485	0.461
42	808	500	832	536	43.267	0.481
43	1178	305	1153	345	47.170	0.524
44	1038	550	1004	596	57.201	0.636
45	851	552	894	551	43.012	0.478
46	968	561	1010	536	48.877	0.543
47	1054	305	1088	268	50.249	0.558
48	1102	175	1118	221	48.703	0.541
49	1173	241	1211	280	54.452	0.605
50	1231	244	1200	251	31.780	0.353

ตาราง 8 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ใช้สารละลายที่มีอัตราส่วนโดยโมลของ

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	295	285	322	318	42.638	0.474
2	411	498	447	494	36.222	0.402
3	541	538	570	572	44.688	0.497
4	766	297	799	290	33.734	0.375
5	776	502	731	530	53.000	0.589
6	948	495	985	488	37.656	0.418
7	1022	300	1066	259	60.141	0.668
8	1165	306	1199	296	35.440	0.394
9	1163	554	1138	581	36.797	0.409
10	1191	303	1216	269	42.202	0.469
11	296	324	331	350	43.600	0.484
12	359	416	368	469	53.759	0.597
13	431	588	460	613	38.288	0.425
14	508	257	515	220	37.656	0.418
15	682	241	726	241	44.000	0.489
16	796	343	802	382	39.459	0.438
17	880	305	927	273	56.859	0.632
18	1100	378	1090	412	35.440	0.394
19	959	375	991	372	32.140	0.357
20	1074	503	1104	490	32.696	0.363
21	280	225	303	192	40.224	0.447
22	403	173	436	172	33.015	0.367
23	315	400	286	413	31.780	0.353
24	258	568	290	587	37.216	0.414
25	473	472	505	479	32.757	0.364

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	524	412	527	451	39.115	0.435
27	653	614	647	636	22.804	0.253
28	685	247	729	240	44.553	0.495
29	872	260	903	233	41.110	0.457
30	931	472	965	491	38.949	0.433
31	1129	457	1158	462	29.428	0.327
32	1015	276	1042	299	35.468	0.394
33	1100	310	1136	293	39.812	0.442
34	1051	389	1050	432	43.012	0.478
35	1136	598	1156	619	29.000	0.322
36	265	295	248	322	31.906	0.355
37	375	358	414	365	39.623	0.440
38	325	534	330	573	39.319	0.437
39	316	613	300	639	30.529	0.339
40	695	499	697	536	37.054	0.412
41	671	615	694	632	28.601	0.318
42	848	281	836	316	37.000	0.411
43	839	505	827	526	24.187	0.269
44	990	236	1010	254	26.907	0.299
45	906	456	938	452	32.249	0.358
46	984	577	1005	604	34.205	0.380
47	866	309	871	348	39.319	0.437
48	882	477	859	500	32.527	0.361
49	1051	291	1024	319	38.897	0.432
50	1194	631	1217	649	29.206	0.325

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	251	182	285	195	36.401	0.426
2	360	317	356	343	26.306	0.308
3	533	171	533	200	29.000	0.340
4	567	290	585	303	22.204	0.260
5	498	573	482	593	25.612	0.300
6	814	660	795	674	23.601	0.276
7	1081	218	1076	245	27.459	0.322
8	1112	343	1110	364	21.095	0.247
9	1018	404	994	436	40.000	0.468
10	1224	488	1218	510	22.804	0.267
11	749	464	742	486	23.087	0.270
12	936	281	944	253	29.120	0.341
13	1208	312	1193	286	30.017	0.351
14	752	537	737	514	27.459	0.322
15	403	597	403	571	26.000	0.304
16	637	592	638	562	30.017	0.351
17	289	588	290	555	33.015	0.387
18	320	480	303	450	34.482	0.404
19	395	283	394	262	21.024	0.246
20	800	386	809	410	25.632	0.300
21	319	289	322	313	24.1868	0.283
22	345	215	371	214	26.0192	0.305
23	748	483	768	490	21.1896	0.248
24	1002	225	1004	250	25.0799	0.294
25	909	351	905	382	31.257	0.366

ตาราง 9 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 15 kV ระยะห่างระหว่างปลายเข็ม กับแผ่นตาข่ายแกรไฟต์ 15 cm

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	936	471	918	503	36.7151	0.430
27	1116	582	1129	607	28.178	0.330
28	1048	307	1068	328	29	0.340
29	1044	590	1067	603	26.4197	0.309
30	1164	529	1187	542	26.4197	0.309
31	1184	324	1191	351	27.8927	0.327
32	1081	380	1045	384	36.2215	0.424
33	854	254	874	238	25.6125	0.300
34	889	426	914	439	28.178	0.330
35	941	588	926	621	36.2491	0.424
36	703	269	705	299	30.0666	0.352
37	552	342	530	349	23.0868	0.270
38	486	361	510	383	32.5576	0.381
39	547	549	539	567	19.6977	0.231
40	500	582	487	590	15.2643	0.179
41	469	618	466	647	29.1548	0.341
42	693	290	678	322	35.3412	0.414
43	748	369	758	386	19.7231	0.231
44	618	441	630	461	23.3238	0.273
45	698	569	727	596	39.6232	0.464
46	656	567	631	554	28.178	0.330
47	590	538	569	540	21.095	0.247
48	410	455	383	456	27.0185	0.316
49	296	439	284	406	35.1141	0.411
50	260	336	260	310	26	0.304

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	334	213	318	233	25.612	0.283
2	408	203	426	224	27.659	0.306
3	380	364	377	391	27.166	0.300
4	368	499	355	520	24.698	0.273
5	301	613	279	650	43.046	0.476
6	525	271	538	310	41.110	0.454
7	506	501	483	530	37.014	0.409
8	484	644	514	668	38.419	0.425
9	648	310	672	310	24.000	0.265
10	620	337	631	386	50.220	0.555
11	597	512	628	536	39.205	0.433
12	605	619	601	647	28.284	0.313
13	754	286	786	288	32.062	0.354
14	751	573	783	573	32.000	0.354
15	922	255	899	289	41.049	0.454
16	922	354	901	375	29.698	0.328
17	906	501	936	526	39.051	0.432
18	878	645	860	664	26.173	0.289
19	929	628	929	653	25.000	0.276
20	1092	307	1120	301	28.636	0.316
21	1085	464	1081	492	28.284	0.313
22	1045	633	1064	640	20.248	0.224
23	833	189	815	243	56.921	0.629
24	800	380	827	406	37.483	0.414
25	854	365	893	359	39.459	0.436

ตาราง 10 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 15 kV ระยะห่างระหว่างปลายเข็ม กับแผ่นตาข่ายแกรไฟต์ 20 cm

NO.	X ₁	Y ₁	X ₂	Y ₂	R	R _{ຈີຈິ} າ
26	953	389	975	402	25.554	0.282
27	1009	456	1018	481	26.571	0.294
28	845	573	868	586	26.420	0.292
29	906	671	944	667	38.210	0.422
30	1093	614	1116	631	28.601	0.316
31	290	239	254	278	53.075	0.586
32	351	289	382	308	36.359	0.402
33	404	408	385	449	45.188	0.499
34	300	520	265	543	41.881	0.463
35	492	373	524	353	37.736	0.417
36	574	299	596	261	43.909	0.485
37	669	246	696	271	36.797	0.407
38	751	304	784	304	33.000	0.365
39	842	274	873	297	38.601	0.427
40	890	350	874	371	26.401	0.292
41	896	439	870	479	47.707	0.527
42	810	536	808	559	23.087	0.255
43	1027	447	1053	462	30.017	0.332
44	866	201	844	225	32.558	0.360
45	853	329	828	335	25.710	0.284
46	758	511	784	532	33.422	0.369
47	1182	168	1164	198	34.986	0.387
48	1070	239	1116	256	49.041	0.542
49	1196	295	1229	286	34.205	0.378
50	1122	465	1097	489	34.655	0.383

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	372	196	383	222	28.231	0.331
2	390	442	374	476	37.577	0.440
3	638	458	684	461	46.098	0.540
4	665	567	682	579	20.809	0.244
5	790	214	786	230	16.492	0.193
6	881	432	915	413	38.949	0.456
7	1100	237	1122	214	31.828	0.373
8	1148	311	1142	336	25.710	0.301
9	1162	386	1138	409	33.242	0.389
10	1199	617	1232	621	33.242	0.389
11	919	265	951	283	36.715	0.430
12	999	266	1022	286	30.480	0.357
13	1140	536	1146	559	23.770	0.278
14	340	573	314	560	29.069	0.340
15	482	534	500	508	31.623	0.370
16	870	576	893	595	29.833	0.349
17	1160	573	1193	564	34.205	0.401
18	913	424	896	396	32.757	0.384
19	974	273	965	245	29.411	0.344
20	1155	309	1177	287	31.113	0.364
21	277	217	296	198	26.870	0.315
22	293	384	292	401	17.029	0.199
23	288	624	272	637	20.616	0.241
24	577	336	560	363	31.906	0.374
25	629	295	667	292	38.118	0.446

ตาราง 11 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 15 kV ระยะห่างระหว่างปลายเข็ม กับแผ่นตาข่ายแกรไฟต์ 25 cm

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	633	497	614	516	26.870	0.315
27	844	233	872	244	30.083	0.352
28	848	388	849	419	31.016	0.363
29	869	485	857	517	34.176	0.400
30	855	561	885	587	39.699	0.465
31	1113	338	1138	368	39.051	0.457
32	1066	518	1078	551	35.114	0.411
33	884	262	906	260	22.091	0.259
34	987	257	1023	270	38.275	0.448
35	905	613	934	613	29.000	0.340
36	1100	525	1146	544	49.769	0.583
37	1121	596	1138	627	35.355	0.414
38	1075	334	1063	358	26.833	0.314
39	937	331	907	336	30.414	0.356
40	899	560	862	542	41.146	0.482
41	689	211	718	234	37.014	0.433
42	701	314	671	336	37.202	0.436
43	496	285	469	314	39.623	0.464
44	284	601	254	602	30.017	0.351
45	368	239	349	271	37.216	0.436
46	483	562	461	569	23.087	0.270
47	577	467	612	484	38.910	0.456
48	606	210	617	243	34.785	0.407
49	633	261	669	271	37.363	0.438
50	1037	336	1058	365	35.805	0.419

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	266	385	292	388	26.173	0.306
2	406	436	442	431	36.346	0.426
3	546	656	588	652	42.190	0.494
4	517	485	517	458	27.000	0.316
5	1086	511	1089	540	29.155	0.341
6	1173	589	1147	606	31.064	0.364
7	939	635	960	657	30.414	0.356
8	416	299	419	270	29.155	0.341
9	489	457	527	452	38.328	0.449
10	559	382	596	381	37.014	0.433
11	627	401	659	393	32.985	0.386
12	951	530	975	550	31.241	0.366
13	1106	250	1129	267	28.601	0.335
14	1124	591	1108	619	32.249	0.378
15	854	275	878	280	24.515	0.287
16	936	237	954	258	27.659	0.324
17	1241	251	1203	239	39.850	0.467
18	485	216	506	200	26.401	0.309
19	921	548	944	553	23.537	0.276
20	338	485	361	497	25.942	0.304
21	329	209	356	217	28.160	0.330
22	422	336	427	356	20.616	0.241
23	298	577	325	574	27.166	0.318
24	408	541	383	563	33.302	0.390
25	369	643	387	660	24.759	0.290

ตาราง 12 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 17 kV ระยะห่างระหว่างปลายเข็ม กับแผ่นตาข่ายแกรไฟต์ 15 cm

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	574	406	592	422	24.083	0.282
27	703	409	714	389	22.825	0.267
28	767	222	772	243	21.587	0.253
29	723	591	744	618	34.205	0.401
30	846	655	863	672	24.042	0.282
31	969	609	988	619	21.471	0.251
32	974	435	995	455	29.000	0.340
33	1209	349	1223	367	22.804	0.267
34	1254	388	1244	413	26.926	0.315
35	1160	513	1125	535	41.340	0.484
36	1082	290	1103	313	31.145	0.365
37	970	553	975	574	21.587	0.253
38	376	203	351	213	26.926	0.315
39	317	365	310	385	21.190	0.248
40	394	341	410	359	24.083	0.282
41	510	374	531	393	28.320	0.332
42	552	254	559	284	30.806	0.361
43	676	343	694	326	24.759	0.290
44	759	452	792	459	33.734	0.395
45	885	261	904	281	27.586	0.323
46	1136	549	1144	570	22.472	0.263
47	905	211	877	232	35.000	0.410
48	888	471	906	484	22.204	0.260
49	1034	538	1040	570	32.558	0.381
50	1118	404	1125	428	25.000	0.293

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{ຈຈີາ}
1	329	297	300	303	29.614	0.347
2	471	625	470	652	27.019	0.316
3	587	189	579	217	29.120	0.341
4	641	403	643	440	37.054	0.434
5	833	496	862	509	31.780	0.372
6	996	296	990	323	27.659	0.324
7	1022	366	1027	405	39.319	0.460
8	1020	493	1032	516	25.942	0.304
9	1011	603	1014	631	28.160	0.330
10	1056	228	1081	243	29.155	0.341
11	1115	566	1119	589	23.345	0.273
12	348	198	330	225	32.450	0.380
13	463	375	489	399	35.384	0.414
14	636	538	660	547	25.632	0.300
15	830	580	858	551	40.311	0.472
16	837	511	849	483	30.463	0.357
17	891	354	898	386	32.757	0.384
18	999	399	1033	414	37.162	0.435
19	1199	198	1201	216	18.111	0.212
20	1226	493	1253	493	27.000	0.316
21	270	391	284	374	22.0227	0.25788
22	302	454	307	477	23.5372	0.27561
23	352	337	382	342	30.4138	0.35613
24	373	268	393	252	25.6125	0.29991
25	446	590	463	613	28.6007	0.3349

ตาราง 13 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 17 kV ระยะห่างระหว่างปลายเข็ม กับแผ่นตาข่ายแกรไฟต์ 20 cm

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	507	253	502	276	23.5372	0.27561
27	551	318	537	346	31.305	0.36657
28	606	652	596	664	15.6205	0.18291
29	626	437	665	423	41.4367	0.48521
30	718	433	732	400	35.8469	0.41975
31	946	245	966	270	32.0156	0.37489
32	896	339	900	363	24.3311	0.28491
33	926	559	949	569	25.0799	0.29368
34	1137	402	1133	425	23.3452	0.27336
35	1010	461	1003	485	25	0.29274
36	1092	513	1118	510	26.1725	0.30647
37	1047	619	1072	651	40.6079	0.4755
38	316	205	336	228	30.4795	0.3569
39	301	397	329	401	28.2843	0.3312
40	446	622	443	641	19.2354	0.22524
41	620	323	609	374	52.1728	0.61092
42	712	226	731	212	23.6008	0.27636
43	833	296	857	306	26	0.30445
44	853	482	821	491	33.2415	0.38925
45	935	456	923	474	21.6333	0.25332
46	872	559	894	586	34.8281	0.40782
47	953	583	974	569	25.2389	0.29554
48	1130	630	1118	644	18.4391	0.21591
49	1171	342	1197	374	41.2311	0.4828
50	1156	418	1181	411	25.9615	0.304

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	286	522	275	507	18.601	0.218
2	294	426	275	416	21.471	0.251
3	394	566	390	595	29.275	0.343
4	584	219	597	249	32.696	0.383
5	630	406	607	418	25.942	0.304
6	668	656	653	682	30.017	0.351
7	751	459	769	420	42.953	0.503
8	936	363	968	351	34.176	0.400
9	1124	487	1150	505	31.623	0.370
10	1172	238	1147	271	41.400	0.485
11	1184	487	1216	504	36.235	0.424
12	318	274	327	240	35.171	0.412
13	693	441	697	412	29.275	0.343
14	693	546	716	563	28.601	0.335
15	940	495	968	480	31.765	0.372
16	1125	465	1158	435	44.598	0.522
17	1169	258	1177	234	25.298	0.296
18	990	520	1003	493	29.967	0.351
19	1118	383	1126	361	23.409	0.274
20	1138	436	1127	480	45.354	0.531
21	301	299	328	317	32.450	0.380
22	352	231	398	220	47.297	0.554
23	443	251	471	277	38.210	0.447
24	370	459	348	480	30.414	0.356
25	563	257	598	271	37.696	0.441

ตาราง 14 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 17 kV ระยะห่างระหว่างปลายเข็ม กับแผ่นตาข่ายแกรไฟต์ 25 cm

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	585	463	596	493	31.953	0.374
27	682	389	727	381	45.706	0.535
28	699	572	728	601	41.012	0.480
29	779	682	813	665	38.013	0.445
30	793	228	827	213	37.162	0.435
31	949	211	970	195	26.401	0.309
32	1198	312	1233	293	39.825	0.466
33	1005	602	966	620	42.953	0.503
34	1042	646	1049	675	29.833	0.349
35	1081	571	1114	579	33.956	0.398
36	971	397	990	410	23.022	0.270
37	1054	447	1090	462	39.000	0.457
38	296	226	328	252	41.231	0.483
39	296	325	317	355	36.620	0.429
40	396	192	421	223	39.825	0.466
41	530	441	579	430	50.220	0.588
42	642	528	675	544	36.674	0.429
43	782	462	793	492	31.953	0.374
44	720	192	729	223	32.280	0.378
45	700	264	679	287	31.145	0.365
46	1207	235	1238	254	36.359	0.426
47	1049	573	1083	573	34.000	0.398
48	1150	569	1168	536	37.590	0.440
49	1188	187	1166	221	40.497	0.474
50	1236	385	1203	410	41.400	0.485

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	334	233	368	234	34.015	0.398
2	381	402	362	430	33.838	0.396
3	400	630	397	658	28.160	0.330
4	471	583	491	602	27.586	0.323
5	682	302	705	284	29.206	0.342
6	700	443	687	461	22.204	0.260
7	893	601	917	587	27.785	0.325
8	1119	350	1150	346	31.257	0.366
9	1202	560	1203	583	23.022	0.270
10	1139	344	1175	359	39.000	0.457
11	296	566	335	567	39.013	0.457
12	324	507	353	493	32.202	0.377
13	352	432	378	430	26.077	0.305
14	737	275	740	303	28.160	0.330
15	937	213	935	238	25.080	0.294
16	1044	177	1042	200	23.087	0.270
17	1021	332	1003	359	32.450	0.380
18	1186	357	1213	352	27.459	0.322
19	921	581	941	559	29.732	0.348
20	1144	548	1155	586	39.560	0.463
21	937	204	959	218	26.0768	0.30535
22	1036	205	1053	221	23.3452	0.27336
23	788	459	813	480	32.6497	0.38231
24	849	521	873	530	25.632	0.30014
25	1180	460	1211	470	32.573	0.38142

ตาราง 15 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 19 kV ระยะห่างระหว่างปลายเข็ม กับแผ่นตาข่ายแกรไฟต์ 15 cm

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	1194	667	1227	679	35.1141	0.41117
27	670	460	637	450	34.4819	0.40377
28	371	499	342	497	29.0689	0.34039
29	493	347	516	361	26.9258	0.31529
30	398	525	427	540	32.6497	0.38231
31	338	552	364	552	26	0.30445
32	510	317	527	300	24.0416	0.28152
33	643	586	623	612	32.8024	0.3841
34	788	195	791	212	17.2627	0.20214
35	855	234	869	245	17.8045	0.20848
36	819	437	793	453	30.5287	0.35748
37	943	469	955	454	19.2094	0.22493
38	1005	449	985	474	32.0156	0.37489
39	1019	599	1060	618	45.1885	0.52914
40	1133	528	1137	551	23.3452	0.27336
41	1155	621	1210	635	56.7539	0.66457
42	1184	271	1185	297	26.0192	0.30467
43	1126	530	1065	517	62.3699	0.73033
44	745	287	745	313	26	0.30445
45	697	329	673	349	31.241	0.36582
46	319	549	296	590	47.0106	0.55048
47	543	207	539	235	28.2843	0.3312
48	519	419	493	461	49.3964	0.57841
49	414	193	411	229	36.1248	0.42301
50	261	297	233	310	30.8707	0.36148

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	266	346	280	363	22.023	0.258
2	410	470	436	467	26.173	0.306
3	492	369	519	359	28.792	0.337
4	575	469	603	475	28.636	0.335
5	643	652	663	667	25.000	0.293
6	763	460	784	470	23.259	0.272
7	854	473	855	500	27.019	0.316
8	842	595	840	615	20.100	0.235
9	1012	386	1042	385	30.017	0.351
10	1224	292	1252	309	32.757	0.384
11	982	171	975	200	29.833	0.349
12	1124	487	1144	500	23.854	0.279
13	396	273	415	288	24.207	0.283
14	448	266	476	260	28.636	0.335
15	468	561	504	533	45.607	0.534
16	659	401	684	394	25.962	0.304
17	948	269	985	286	40.719	0.477
18	1093	355	1126	355	33.000	0.386
19	1064	534	1099	532	35.057	0.411
20	953	350	971	346	18.439	0.216
21	347	196	333	218	26.0768	0.30535
22	307	262	280	271	28.4605	0.33326
23	269	503	294	518	29.1548	0.34139
24	455	593	431	605	26.8328	0.3142
25	480	264	490	287	25.0799	0.29368

ตาราง 16 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 19 kV ระยะห่างระหว่างปลายเข็ม กับแผ่นตาข่ายแกรไฟต์ 20 cm

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	497	404	521	423	30.6105	0.35844
27	585	296	614	318	36.4005	0.42624
28	625	518	614	539	23.7065	0.27759
29	725	446	737	425	24.1868	0.28322
30	821	656	835	635	25.2389	0.29554
31	964	473	958	496	23.7697	0.27833
32	974	343	990	362	24.8395	0.29086
33	1211	438	1198	457	23.0217	0.26958
34	1084	635	1073	653	21.095	0.24701
35	804	439	790	457	22.8035	0.26702
36	872	555	866	584	29.6142	0.34677
37	998	280	987	304	26.4008	0.30914
38	1042	510	1072	528	34.9857	0.40967
39	1187	516	1208	536	29	0.33958
40	336	180	335	205	25.02	0.29297
41	324	479	323	505	26.0192	0.30467
42	460	298	490	279	35.5106	0.41581
43	552	360	580	346	31.305	0.36657
44	595	352	621	347	26.4764	0.31003
45	942	493	941	514	21.0238	0.24618
46	1061	564	1088	584	33.6006	0.39345
47	1144	548	1173	562	32.2025	0.37708
48	957	433	945	453	23.3238	0.27311
49	1004	387	1026	391	22.3607	0.26183
50	1121	262	1114	283	22.1359	0.2592

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	374	394	387	362	34.540	0.404
2	525	372	532	337	35.693	0.418
3	808	192	821	206	19.105	0.224
4	789	586	815	599	29.069	0.340
5	1008	265	1024	279	21.260	0.249
6	608	639	636	660	35.000	0.410
7	1124	613	1136	646	35.114	0.411
8	856	264	883	291	38.184	0.447
9	913	329	940	338	28.460	0.333
10	1054	531	1060	552	21.840	0.256
11	333	323	330	300	23.195	0.272
12	516	407	541	428	32.650	0.382
13	695	183	715	197	24.413	0.286
14	743	227	749	256	29.614	0.347
15	901	420	934	426	33.541	0.393
16	1028	601	1061	601	33.000	0.386
17	1202	473	1227	497	34.655	0.406
18	897	368	908	384	19.416	0.227
19	1165	210	1180	235	29.155	0.341
20	1164	358	1196	370	34.176	0.400
21	295	262	299	300	38.2099	0.44742
22	390	368	386	398	30.2655	0.3544
23	625	246	627	291	45.0444	0.52745
24	637	351	620	374	28.6007	0.3349
25	628	484	609	510	32.2025	0.37708

ตาราง 17 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 19 kV ระยะห่างระหว่างปลายเข็ม กับแผ่นตาข่ายแกรไฟต์ 25 cm

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	716	521	759	530	43.9318	0.51442
27	782	502	800	479	29.2062	0.34199
28	942	311	978	300	37.6431	0.44079
29	929	486	949	500	24.4131	0.28587
30	1044	637	1065	631	21.8403	0.25574
31	1149	504	1160	516	16.2788	0.19062
32	985	211	995	242	32.573	0.38142
33	925	331	952	357	37.4833	0.43891
34	899	538	861	551	40.1622	0.47028
35	1129	452	1101	479	38.8973	0.45547
36	1182	627	1210	652	37.5366	0.43954
37	1104	450	1124	476	32.8024	0.3841
38	1130	553	1117	573	23.8537	0.27932
39	1000	612	962	613	38.0132	0.44512
40	924	583	886	581	38.0526	0.44558
41	857	520	882	491	38.2884	0.44834
42	780	339	798	316	29.2062	0.34199
43	679	598	704	626	37.5366	0.43954
44	606	284	589	310	31.0644	0.36375
45	542	223	528	210	19.105	0.22371
46	386	357	375	345	16.2788	0.19062
47	265	463	233	456	32.7567	0.38357
48	623	227	588	234	35.6931	0.41795
49	530	559	543	572	18.3848	0.21528
50	371	553	351	523	36.0555	0.4222

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	240	568	270	565	30.150	0.353
2	345	171	350	193	22.561	0.264
3	424	390	463	382	39.812	0.466
4	533	554	562	571	33.615	0.394
5	683	315	710	332	31.906	0.374
6	784	456	779	475	19.647	0.230
7	887	387	900	374	18.385	0.215
8	839	542	866	554	29.547	0.346
9	1058	289	1071	312	26.420	0.309
10	1067	392	1055	405	17.692	0.207
11	283	485	315	482	32.140	0.376
12	405	282	436	301	36.359	0.426
13	511	326	554	318	43.738	0.512
14	652	474	679	451	35.468	0.415
15	863	367	884	388	29.698	0.348
16	1016	209	1040	230	31.890	0.373
17	1028	535	1058	546	31.953	0.374
18	1171	382	1215	376	44.407	0.520
19	834	443	869	478	49.497	0.580
20	948	457	961	441	20.616	0.241
21	238	540	261	533	24.0416	0.28152
22	364	324	383	289	39.8246	0.46633
23	374	543	398	569	35.3836	0.41433
24	546	384	576	415	43.1393	0.50514
25	605	571	633	571	28	0.32787

ตาราง 18 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 21 kV ระยะห่างระหว่างปลายเข็ม กับแผ่นตาข่ายแกรไฟต์ 15 cm

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	717	233	748	261	41.7732	0.48915
27	747	454	731	492	41.2311	0.4828
28	809	544	831	562	28.4253	0.33285
29	889	416	928	422	39.4588	0.46205
30	1002	250	1014	234	20	0.23419
31	972	647	999	661	30.4138	0.35613
32	1103	426	1129	442	30.5287	0.35748
33	1224	221	1253	235	32.2025	0.37708
34	1121	601	1155	629	44.0454	0.51575
35	1007	258	1038	282	39.2046	0.45907
36	1183	271	1163	295	31.241	0.36582
37	1017	628	1012	659	31.4006	0.36769
38	256	572	276	549	30.4795	0.3569
39	342	340	369	328	29.5466	0.34598
40	426	559	457	544	34.4384	0.40326
41	475	297	492	319	27.8029	0.32556
42	717	243	710	283	40.6079	0.4755
43	670	594	704	623	44.6878	0.52328
44	847	218	896	223	49.2544	0.57675
45	772	473	802	487	33.1059	0.38766
46	913	340	948	365	43.0116	0.50365
47	1015	556	1020	570	14.8661	0.17408
48	1143	181	1127	198	23.3452	0.27336
49	918	292	926	322	31.0483	0.36356
50	970	454	975	470	16.7631	0.19629

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	280	319	304	334	28.302	0.331
2	490	282	498	316	34.928	0.409
3	494	451	469	468	30.232	0.354
4	603	671	629	654	31.064	0.364
5	650	511	671	506	21.587	0.253
6	744	235	749	262	27.459	0.322
7	738	308	752	328	24.413	0.286
8	847	417	854	444	27.893	0.327
9	1046	308	1066	333	32.016	0.375
10	1049	463	1084	468	35.355	0.414
11	963	633	948	655	26.627	0.312
12	1144	558	1138	580	22.804	0.267
13	957	622	963	600	22.804	0.267
14	1039	249	1054	276	30.887	0.362
15	308	201	319	227	28.231	0.331
16	410	399	427	414	22.672	0.265
17	586	353	614	351	28.071	0.329
18	799	464	827	444	34.409	0.403
19	961	336	994	346	34.482	0.404
20	1140	324	1161	328	21.378	0.250
21	380	196	373	219	24.0416	0.28152
22	359	328	343	338	18.868	0.22094
23	333	406	322	444	39.5601	0.46323
24	300	629	297	651	22.2036	0.26
25	396	609	426	632	37.8021	0.44265

ตาราง 19 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 21 kV ระยะห่างระหว่างปลายเข็ม กับแผ่นตาข่ายแกรไฟต์ 20 cm
No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	464	342	486	345	22.2036	0.26
27	532	381	541	399	20.1246	0.23565
28	773	235	804	256	37.4433	0.43845
29	775	417	743	425	32.9848	0.38624
30	717	506	708	540	35.171	0.41184
31	918	520	927	542	23.7697	0.27833
32	961	271	1012	262	51.788	0.60642
33	1136	429	1129	457	28.8617	0.33796
34	1149	589	1155	606	18.0278	0.2111
35	972	252	991	277	31.4006	0.36769
36	1007	494	1012	513	19.6469	0.23006
37	1060	474	1085	486	27.7308	0.32472
38	318	279	328	306	28.7924	0.33715
39	298	538	325	550	29.5466	0.34598
40	553	333	560	351	19.3132	0.22615
41	689	242	702	226	20.6155	0.2414
42	721	470	805	486	85.5102	1.00129
43	873	304	903	290	33.1059	0.38766
44	979	373	1026	378	47.2652	0.55346
45	1132	234	1129	258	24.1868	0.28322
46	1159	321	1190	338	35.3553	0.414
47	1086	495	1075	519	26.4008	0.30914
48	904	204	892	237	35.1141	0.41117
49	839	406	865	422	30.5287	0.35748
50	1062	377	1124	414	72.2011	0.84545

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	322	266	338	235	34.886	0.408
2	498	587	504	630	43.417	0.508
3	606	208	639	195	35.468	0.415
4	629	375	615	406	34.015	0.398
5	719	311	750	303	32.016	0.375
6	775	219	801	204	30.017	0.351
7	833	531	844	568	38.601	0.452
8	807	666	836	650	33.121	0.388
9	993	639	1014	613	33.422	0.391
10	1168	627	1197	604	37.014	0.433
11	1189	220	1216	227	27.893	0.327
12	975	355	989	390	37.696	0.441
13	1155	208	1181	188	32.802	0.384
14	286	375	316	348	40.361	0.473
15	640	397	666	371	36.770	0.431
16	1077	213	1105	243	41.037	0.481
17	1084	542	1119	525	38.910	0.456
18	871	170	902	155	34.438	0.403
19	1047	493	1067	469	31.241	0.366
20	1012	403	1045	379	40.804	0.478
21	329	196	362	219	40.224	0.471
22	287	250	319	273	39.408	0.461
23	319	590	309	625	36.401	0.426
24	401	650	409	621	30.083	0.352
25	558	208	604	186	50.990	0.597

ตาราง 20 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ความต่างศักย์ 21 kV ระยะห่างระหว่างปลายเข็ม กับแผ่นตาข่ายแกรไฟต์ 25 cm

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{aŝv}
26	786	271	817	280	32.280	0.378
27	759	389	787	397	29.120	0.341
28	699	623	727	630	28.862	0.338
29	776	632	811	614	39.357	0.461
30	883	572	917	599	43.417	0.508
31	988	454	1036	432	52.802	0.618
32	1026	190	1063	168	43.046	0.504
33	820	566	856	547	40.706	0.477
34	923	556	960	516	54.489	0.638
35	1101	576	1108	607	31.780	0.372
36	1179	610	1218	627	42.544	0.498
37	1196	527	1186	552	26.926	0.315
38	1075	321	1117	341	46.519	0.545
39	1014	308	980	329	39.962	0.468
40	947	411	935	437	28.636	0.335
41	918	626	941	648	31.828	0.373
42	335	212	291	249	57.489	0.673
43	371	558	331	603	60.208	0.705
44	622	173	613	205	33.242	0.389
45	665	250	693	258	29.120	0.341
46	523	467	554	493	40.460	0.474
47	605	477	637	484	32.757	0.384
48	1091	175	1107	223	50.596	0.592
49	1029	278	1018	316	39.560	0.463
50	994	531	1038	506	50.606	0.593

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	513	645	525	620	27.731	0.325
2	715	371	742	360	29.155	0.341
3	987	190	999	208	21.633	0.253
4	876	407	851	425	30.806	0.361
5	874	598	888	618	24.413	0.286
6	1084	340	1109	353	28.178	0.330
7	1049	538	0 1047	560	22.091	0.259
8	1215	511	1235	522	22.825	0.267
9	1179	601	1159	620	27.586	0.323
10	1023	297	1031	317	21.541	0.252
11	1189	199	1217	193	28.636	0.335
12	320	399	321	367	32.016	0.375
13	670	551	692	535	27.203	0.319
14	772	316	794	286	37.202	0.436
15	978	356	1000	365	23.770	0.278
16	965	561	990	569	26.249	0.307
17	1020	625	1048	611	31.305	0.367
18	1182	460	1207	443	30.232	0.354
19	880	368	884	340	28.284	0.331
20	939	504	929	551	48.052	0.563
21	289	208	283	225	18.0278	0.2111
22	305	395	307	427	32.0624	0.37544
23	253	600	262	613	15.8114	0.18515
24	352	629	376	613	28.8444	0.33776
25	431	445	439	467	23.4094	0.27411

ตาราง 21 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่ไม่ได้ผ่านการเผาแคลไซน์

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	587	509	585	529	20.0998	0.23536
27	657	212	684	203	28.4605	0.33326
28	796	261	814	280	26.1725	0.30647
29	745	521	743	542	21.095	0.24701
30	968	403	992	384	30.6105	0.35844
31	1120	401	1143	406	23.5372	0.27561
32	946	651	975	661	30.6757	0.3592
33	997	641	1022	622	31.4006	0.36769
34	1099	233	1086	248	19.8494	0.23243
35	1113	302	1120	320	19.3132	0.22615
36	1033	438	1024	471	34.2053	0.40053
37	1041	573	1038	594	21.2132	0.2484
38	1185	650	1166	684	38.9487	0.45607
39	1001	391	979	405	26.0768	0.30535
40	996	518	1003	535	18.3848	0.21528
41	1137	558	1157	575	26.2488	0.30736
42	775	267	793	277	20.5913	0.24112
43	708	493	689	522	34.6699	0.40597
44	471	182	447	193	26.4008	0.30914
45	529	487	510	493	19.9249	0.23331
46	425	602	405	591	22.8254	0.26728
47	237	257	253	277	25.6125	0.29991
48	249	304	237	369	66.0984	0.77399
49	574	361	572	388	27.074	0.31703
50	386	431	398	451	23.3238	0.27311

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	369	460	376	438	23.087	0.270
2	642	231	675	214	37.121	0.435
3	744	262	778	273	35.735	0.418
4	897	215	916	234	26.870	0.315
5	1134	248	1169	248	35.000	0.410
6	1053	485	1077	500	28.302	0.331
7	855	453	878	423	37.802	0.443
8	992	304	1001	336	33.242	0.389
9	1107	457	1100	475	19.313	0.226
10	1149	642	1164	663	25.807	0.302
11	374	186	394	207	29.000	0.340
12	380	258	351	272	32.202	0.377
13	381	474	400	482	20.616	0.241
14	490	381	521	398	35.355	0.414
15	774	361	801	375	30.414	0.356
16	812	431	819	453	23.087	0.270
17	901	491	917	513	27.203	0.319
18	982	570	1004	587	27.803	0.326
19	975	333	1004	319	32.202	0.377
20	982	436	970	457	24.187	0.283
21	251	588	280	573	32.650	0.382
22	373	215	385	204	16.279	0.191
23	359	368	347	384	20.000	0.234
24	372	484	341	513	42.450	0.497
25	347	641	348	677	36.014	0.422

ตาราง 22 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่เผาแคลไซน์ด้วยอุณหภูมิ 400 องศาเซลเซียส

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	460	637	478	657	26.907	0.315
27	497	566	490	544	23.087	0.270
28	608	373	624	373	16.000	0.187
29	636	360	676	379	44.283	0.519
30	655	510	693	520	39.294	0.460
31	821	376	837	399	28.018	0.328
32	907	529	923	559	34.000	0.398
33	1038	606	1064	637	40.460	0.474
34	1223	354	1233	332	24.166	0.283
35	871	578	837	622	55.606	0.651
36	1121	386	1143	391	22.561	0.264
37	1066	585	1078	599	18.439	0.216
38	471	526	500	509	33.615	0.394
39	577	436	599	469	39.661	0.464
40	685	333	648	366	49.578	0.581
41	669	556	694	569	28.178	0.330
42	749	218	762	201	21.401	0.251
43	908	298	923	285	19.849	0.232
44	1010	459	1022	444	19.209	0.225
45	1059	271	1069	248	25.080	0.294
46	1125	200	1169	201	44.011	0.515
47	855	452	858	474	22.204	0.260
48	924	243	938	267	27.785	0.325
49	951	297	955	317	20.396	0.239
50	1208	463	1231	455	24.352	0.285

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	337	676	352	665	18.601	0.218
2	473	498	494	496	21.095	0.247
3	575	403	579	425	22.361	0.262
4	637	539	664	547	28.160	0.330
5	813	256	847	250	34.525	0.404
6	998	314	1021	295	29.833	0.349
7	1177	209	0 1167 0	238	30.676	0.359
8	1130	336	1153	353	28.601	0.335
9	958	585	979	600	25.807	0.302
10	1091	517	1118	501	31.385	0.368
11	319	349	329	379	31.623	0.370
12	512	395	535	392	23.195	0.272
13	609	163	634	168	25.495	0.299
14	621	353	647	348	26.476	0.310
15	824	250	846	265	26.627	0.312
16	946	454	965	423	36.359	0.426
17	1038	533	1075	522	38.601	0.452
18	1075	179	1089	197	22.804	0.267
19	1094	236	1090	265	29.275	0.343
20	1077	433	1057	454	29.000	0.340
21	306	184	312	215	31.575	0.370
22	414	297	433	286	21.954	0.257
23	391	358	366	361	25.179	0.295
24	345	495	316	530	45.453	0.532
25	529	469	559	461	31.048	0.364

ตาราง 23 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่เผาแคลไซน์ด้วยอุณหภูมิ 600 องศาเซลเซียส

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	528	581	542	592	17.804	0.208
27	761	375	763	394	19.105	0.224
28	797	488	762	518	46.098	0.540
29	890	568	924	559	35.171	0.412
30	1046	455	1070	471	28.844	0.338
31	1134	534	1161	517	31.906	0.374
32	1215	574	1240	576	25.080	0.294
33	989	655	971	663	19.698	0.231
34	945	406	967	434	35.609	0.417
35	973	662	989	656	17.088	0.200
36	1044	231	1067	193	44.418	0.520
37	1198	201	1223	199	25.080	0.294
38	1150	206	1179	214	30.083	0.352
39	990	496	973	540	47.170	0.552
40	849	335	864	354	24.207	0.283
41	794	182	787	216	34.713	0.406
42	282	169	292	191	24.166	0.283
43	332	202	344	235	35.114	0.411
44	486	258	505	287	34.670	0.406
45	431	483	416	521	40.853	0.478
46	442	553	418	579	35.384	0.414
47	576	302	555	325	31.145	0.365
48	463	483	434	498	32.650	0.382
49	336	554	302	546	34.928	0.409
50	277	242	260	279	40.719	0.477

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	393	452	399	427	25.710	0.301
2	599	301	625	301	26.000	0.304
3	790	261	781	291	31.321	0.367
4	844	465	872	477	30.463	0.357
5	887	625	873	648	26.926	0.315
6	974	371	998	369	24.083	0.282
7	1113	514	1119	531	18.028	0.211
8	1192	634	1186	659	25.710	0.301
9	888	366	882	392	26.683	0.312
10	1011	288	1020	269	21.024	0.246
11	1104	475	1133	478	29.155	0.341
12	264	519	301	514	37.336	0.437
13	337	385	348	361	26.401	0.309
14	553	182	560	201	20.248	0.237
15	642	286	666	279	25.000	0.293
16	731	194	757	205	28.231	0.331
17	927	307	944	315	18.788	0.220
18	911	454	932	463	22.847	0.268
19	1189	483	1201	503	23.324	0.273
20	1099	300	1127	302	28.071	0.329
21	400	190	416	214	28.844	0.338
22	417	325	398	353	33.838	0.396
23	239	521	277	520	38.013	0.445
24	315	562	338	602	46.141	0.540
25	420	595	467	586	47.854	0.560

ตาราง 24 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่เผาแคลไซน์ด้วยอุณหภูมิ 800 องศาเซลเซียส

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	457	596	441	604	17.889	0.209
27	802	197	793	220	24.698	0.289
28	717	330	739	366	42.190	0.494
29	780	523	773	549	26.926	0.315
30	1113	307	1106	329	23.087	0.270
31	1065	492	1080	501	17.493	0.205
32	1056	564	1080	573	25.632	0.300
33	1058	224	1043	259	38.079	0.446
34	1085	434	1077	457	24.352	0.285
35	989	479	980	508	30.364	0.356
36	282	429	245	435	37.483	0.439
37	255	581	242	595	19.105	0.224
38	563	322	549	331	16.643	0.195
39	542	414	496	426	47.539	0.557
40	584	653	557	641	29.547	0.346
41	686	220	673	236	20.616	0.241
42	745	594	735	617	25.080	0.294
43	838	248	840	285	37.054	0.434
44	858	332	847	351	21.954	0.257
45	1032	550	1042	570	22.361	0.262
46	868	218	834	218	34.000	0.398
47	943	331	934	356	26.571	0.311
48	993	314	1007	332	22.804	0.267
49	1146	218	1167	232	25.239	0.296
50	1187	262	1215	243	33.838	0.396

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
1	335	420	354	400	27.586	0.323
2	552	411	573	398	24.698	0.289
3	655	486	682	467	33.015	0.387
4	678	586	700	572	26.077	0.305
5	775	643	802	622	34.205	0.401
6	752	349	777	355	25.710	0.301
7	855	408	873	394	22.804	0.267
8	909	507	912	534	27.166	0.318
9	979	271	1006	263	28.160	0.330
10	1127	306	1142	282	28.302	0.331
11	1044	576	1036	597	22.472	0.263
12	443	204	447	181	23.345	0.273
13	667	305	691	313	25.298	0.296
14	741	333	751	356	25.080	0.294
15	722	540	748	533	26.926	0.315
16	848	476	858	457	21.471	0.251
17	1075	376	1084	351	26.571	0.311
18	1154	487	1170	469	24.083	0.282
19	994	522	1004	496	27.857	0.326
20	1176	324	1201	316	26.249	0.307
21	279	263	271	292	30.083	0.352
22	338	486	369	508	38.013	0.445
23	269	566	296	589	35.468	0.415
24	319	611	327	641	31.048	0.364
25	470	214	498	196	33.287	0.390

ตาราง 25 แสดงขนาดเส้นผ่านศูนย์กลางเส้นใยซิลิกาที่เผาแคลไซน์ด้วยอุณหภูมิ 1000 องศาเซลเซียส

No.	X ₁	Y ₁	X ₂	Y ₂	R	R _{จริง}
26	504	477	519	494	22.672	0.265
27	652	217	671	224	20.248	0.237
28	661	373	655	396	23.770	0.278
29	674	639	662	665	28.636	0.335
30	1028	297	1066	299	38.053	0.446
31	1016	452	1011	476	24.515	0.287
32	941	649	982	651	41.049	0.481
33	1058	196	1053	217	21.587	0.253
34	1182	226	1208	211	30.017	0.351
35	1117	441	1097	470	35.228	0.413
36	1164	465	1175	447	21.095	0.247
37	1150	673	1126	683	26.000	0.304
38	1131	453	1164	473	38.588	0.452
39	1015	299	982	308	34.205	0.401
40	830	177	837	195	19.313	0.226
41	763	145	773	163	20.591	0.241
42	666	176	643	190	26.926	0.315
43	665	448	636	472	37.643	0.441
44	469	231	455	254	26.926	0.315
45	631	565	659	558	28.862	0.338
46	618	527	593	517	26.926	0.315
47	531	264	521	283	21.471	0.251
48	499	597	467	612	35.341	0.414
49	308	325	326	313	21.633	0.253
50	297	478	304	500	23.087	0.270

ศักย์ไฟฟ้าและความต่างศักย์ไฟฟ้า

เมื่อประจุ q₀ วางอยู่ในสนามไฟฟ้า E ประจุจะถูกแรงกระทำจากสนามไฟฟ้าด้วยขนาดของแรง F = q₀E ทำให้ประจุเคลื่อนที่จากระยะห่างอนันต์มายังจุด P ทำให้เกิดงานและมีพลังงานศักย์ไฟฟ้าเกิดขึ้น พลังงานศักย์ต่อหนึ่งหน่วยประจุที่วางไว้ ณ จุดใดๆ คือ ศักย์ไฟฟ้า (Electric Potential) เขียนสมการได้ เป็น

$$V_p = \frac{E_p}{q}$$

เราสามารถหาศักย์ไฟฟ้าจากสมการไฟฟ้าที่จุด P ใดๆ ได้จาก

$$v_p = -\int_{\infty}^{P} \vec{E} \cdot \partial \vec{s}$$

ศักย์ไฟฟ้าเป็นปริมาณสเกลาร์ มีหน่วยเป็นจูลต่อคูลอมบ์ (J/K) หรือ เรียกว่าโวลต์ (Volt)

ความต่างศักย์ (Potential Difference) ของศักย์ไฟฟ้าระหว่างจุดสองจุดมีค่าเท่ากับการเปลี่ยนแปลง พลังงานเมื่อประจุไฟฟ้าบวกหนึ่งหน่วยเคลื่อนที่จากจุดหนึ่งไปยังอีกจุดหนึ่งในสนามไฟฟ้า หน่วยของความต่าง ศักย์ไฟฟ้า คือ โวลต์ (Volt) พลังงานไฟฟ้าจะเปลี่ยนไป 1 จุด เมื่อประจุไฟฟ้า 1 คูลอมบ์ เคลื่อนที่ระหว่างจุดสองจุด ที่มีความต่างศักย์ 1 โวลต์ ซึ่งส่วนใหญ่มีการกำหนดจุดอ้างอิงจุดหนึ่งให้มีศักย์ไฟฟ้าเท่ากับ 0 (ทำการต่อลงดิน) งานทั้งหมด หรือพลังงานศักย์ที่ต้องใช้ในการเคลื่อนที่ประจุ จาก a ไปยัง b สามารถเขียนได้ เป็น

$$w = -q_0 \int_a^b \vec{E} \, . \, \partial \vec{s}$$

ความต่างศักย์ระหว่างจุด a กับ b เขียนสมการได้เป็น

$$V_{ab} = V_b - V_a = \frac{w}{q_0} = -\int_a^b \vec{E} \cdot \partial \vec{s}$$

ถ้า V_{ab} เป็นลบจะเกิดการสูญเสียพลังงานศักย์ที่เคลื่อนที่ประจุจาก a ไปยัง b แสดงว่า สนามไฟฟ้าเป็นตัวกระทำงาน ถ้าเป็นบวก (ทิศทางที่ประจุเคลื่อนที่สวนกับทิศทางของสนามไฟฟ้า) คือ เมื่อมีพลังงานศักย์ในการเคลื่อนที่เพิ่มขึ้น แสดงให้เห็นว่าแรงภายนอกเป็นตัวกระทำงาน

สนามไฟฟ้า

กฏของคูลอมบ์กล่าวว่า ขนาดของแรงไฟฟ้าระหว่างจุดสองจุดประจุ (Point Charge) แปรผันตรง กับผลคูณของค่าประจุทั้งสอง และแปรผกผันกับกำลังสองของระยะทางระหว่างประจุนั้น ซึ่งสามารถเขียน ขนาดของแรง F ระหว่างสองจุดประจุ คือ q₁ และ q₂ ที่อยู่ห่างกันเป็นระยะ r ได้เป็น

$$F = \frac{kq_1q_2}{r^2}$$

เมื่อ k เป็นค่าคงที่สัดส่วน (Proportionality constant) ในระบบเอสไอมักเขียนค่า k เป็น $rac{1}{4\piarepsilon_0}$ เมื่อ $m{\epsilon}_0$ เป็นค่าคงที่ เรียกว่า Permitivity constant ซึ่งจะเขียนกฎของคูลอมบ์ได้เป็น

$$F = \frac{1q_1q_2}{(4\pi\varepsilon_0)r^2}$$

เมื่อ ϵ_0 มีค่าเท่ากับ $8.854 \times 10^{-12} c^2/Nm^2$ ดังนั้น k มีค่าเท่ากับ $9 \times 10^9 Nm^2/c^2$

เนื่องจากแรงเป็นปริมาณเวกเตอร์ ในการใช้กฎของคูลอมบ์จึงต้องพิจารณาทิศทางของแรงด้วย ถ้า q₁ และ q₂ เป็นประจุชนิดเดียวกันจะเกิดแรงผลักซึ่งกันและกัน ทิศทางของแรงแต่ละประจุชี้ออกจากกัน ถ้า q₁ และ q₂ เป็นประจุต่างชนิดกันจะเกิดแรงดึงดูดซึ่งกันและกัน ทิศทางของแรงแต่ละประจุจะชี้เข้าหา กัน

สนามไฟฟ้า (Electric Field) หมายถึง บริเวณโดยรอบประจุไฟฟ้า ซึ่งประจุไฟฟ้าสามารถส่ง อำนาจไปถึงหรือบริเวณที่เมื่อนำประจุไฟฟ้าเข้าไปวางแล้ว จะเกิดแรงกระทำบนประจุไฟฟ้านั้นตามจุด ต่างๆในบริเวณสนามไฟฟ้าย่อมมีความเข้มของสนามไฟฟ้าแตกต่างกัน จุดที่อยู่ใกล้ประจุไฟฟ้าจะมีความ เข้มของสนามไฟฟ้าสูงกว่าจุดที่อยู่ห่างออกไป นอกจากนั้น ณ จุดต่างๆในบริเวณสนามไฟฟ้าย่อมจะมี ความต่างศักย์ไฟฟ้าที่มีค่าต่างๆกันด้วย ซึ่งเป็นศักย์ไฟฟ้าชนิดเดียวกับศักย์ไฟฟ้าอันเกิดจากประจุไฟฟ้าที่ เป็นเจ้าของสนามไฟฟ้า จุดที่อยู่ใกล้ประจุไฟฟ้าจะมีศักย์สูงกว่าจุดที่อยู่ไกลออกไป นิยามได้ว่า สนามไฟฟ้าเป็นแรงต่อประจุ 1 คูลอมบ์ มีหน่วยเป็นนิวตันต่อคูลอมบ์ (N/C) ในระบบเอสไอ

$$\mathbf{E} = \frac{F}{q}$$

ภาคผนวก ง

۰.

٥

.....

0.00

0 ٠ 0

0

ø

• • •

ø

XR F XRD Pattern ของอะลูมิเนียม และ

FT IR spectrum ของอะลูมิเนียม

Nacional

....

0

ø

۰

ø

XRD pattern ของอะลูมิเนียม แสดงดังภาพประกอบ 34 และ FT IR spectrum ของอะลูมิเนียม แสดงดังภาพประกอบ 35

ภาพประกอบ 33 XRD pattern ของอะลูมิเนียม 1:2.0 [Amim]Cl/AlCl₃ at 20 mA/cm². อุณหภูมิที่ใช้ใน การเคลือบ (K): (a) 313.15, (b) 353.15, (c) 373.15.

ที่มา: Y. Zheng; et al. (2012). The Crystal Orientation of Aluminium Coatings Deposited From Lonic Liquids. *American Institute of Chemical Engineers*. (online).

ที่มา: S. Music; N. Filipovic-vincekovic; & L. Sekovanic. (2011). Precipitation of

Amorphous SiO_2 Paritcles and their Properties. *Brazilian Journal of Chemical Engineering*. (online).

ประวัติย่อผู้วิจัย

ชื่อ ชื่อสกุล	นัฐยา ประมวลทรัพย์	
วัน เดือน ปีเกิด	18 สิงหาคม พ.ศ.2527	
สถานที่เกิด	อำเภอ เมือง จังหวัด ปราจีร	นบุรี
สถานที่อยู่ปัจจุบัน	95 ม.1 ต. ดงกระทงยาม	อ.ศรีมหาโพธิ จ. ปราจีนบุรี 25140

ประวัติการศึกษา			
พ.ศ.2545	มัธยมศึกษาตอนปลาย		
	จากโรงเรียนปราจิณราษฎรอำรุง อำเภอเมือง จังหวัดปราจีนบุรี		
พ.ศ.2549	วท.บ. สาขาฟิสิกส์		
	จากมหาวิทยาลัยศรีนครินทรวิโรฒ		
พ.ศ.2550	ประกาศนียบัตร บัณฑิต สาขา วิชาชีพครู		
: .	จากมหาวิทยาลัยศรีนครินทรวิโรฒ		
พ.ศ.2557	วท.ม. สาขาฟิสิกส์		
	จากมหาวิทยาลัยศรีนครินทรวิโรฒ		
