CONSONANT-TONE INTERACTION IN THAI: AN OT ANALYSIS*

Sugunya Ruangjaroon

Abstract

Thai tones have traditionally been characterized in terms of a correlation between tones and syllable type (Gandour 1974, Tumtavitikul 1993, Intrasri 2001, Morin and Zsiga 2006). However, I show that a more interesting set of observations can be made on the distribution of Thai tones in which they can be explained as a consequence of consonant-tone interaction within an OT framework. The observations are that unaspirated stops are not compatible with a high tone vowel in the nucleus. An obstruent coda has the effect of shortening the vowel in the nucleus, something that is testable via phonetic experimentation. This shortening effect places a burden on either phonetic perception or production, so that the five-way contrast is neutralized to a two-way contrast. The shortening effect places an especially strong burden on contour tones, so these tones are preferably excluded from the two-way contrast. The best two-way contrast among the three level tones is a simple high-low contrast, which is more readily perceivable than a low-mid or high-mid contrast. I also show that unaspirated obstruents prefer to be adjacent to a non-high tone. Unaspirated coda are allowed to be adjacent to a preceding high tone in a short vowel, but a long vowel presents an opportunity to insert a low tone on the second tone bearing unit, thus producing a two-way contrast between low and falling tone instead. This insertion of a low tone is done in order to avoid a situation where a high tone vowel would be adjacent to the unaspirated consonant. A high-tone vowel- unaspirated coda sequence would result otherwise. It is argued that the attested patterns of consonant-tone interaction in Thai are captured by conjoining two markedness constraints in addition to the simple markedness constraints.

${ }^{*}$ I would like to express my thanks to Jeremy Perkins for his very insightful and helpful discussions and comments. This paper would not have turned out the way it did without his suggestions. I am especially grateful to the anonymous reviewers of the TJL journal. Thanks also to Patricia A. Shaw, Lisa Matthewson, Rose-Marie Déchaine, Gunnar Ólafur Hansson, Brian Gick, and Douglas Pulleyblank for their comments. I am, however, solely responsible for the content of the paper.

1. INTRODUCTION

In this paper, I adopt an Optimality Theoretic framework to provide an account for the restrictions on the distribution of Thai tones with a focus on vowel length and consonant-tone interaction. It is argued that the interaction of markedness constraints with faithfulness constraints (Prince \& Smolensky 1993) provides a coherent explanation of such distributional restrictions within the Thai tonal system. I will first provide, in Section 2, an overview of Thai phonological structure and discuss theoretical issues in Thai tonology concerning how vowel length correlates with tone (Gandour 1974, Tumtavitikul 1993, Intrasri 2001, Morin and Zsiga 2006). Section 3 discusses how consonant-type interacts with tone and a further and particularly interesting set of observations is presented, adding the need for more constraints on the distribution of Thai tone. Section 4 provides an OT account of these restrictions. Section 5 discusses remaining issues.

2. THAI PHONOLOGY AND LEXICAL TONES

2.1 Thai Phonological Structures

In this section, I will introduce Thai phonology and discuss how vowel length and consonants are the major determinants of tones. The consonant and vowel inventories of Thai are given below.
(1) Consonant phoneme inventory

Consonantal	Bilabial	Labio- dental	Alveolar	Palatal	Velar	Glottal
Stop	$\mathrm{p}, \mathrm{p}^{\mathrm{h}}, \mathrm{b}$		$\mathrm{t}, \mathrm{t}^{\mathrm{h}}, \mathrm{d}$		$\mathrm{k}, \mathrm{k}^{\mathrm{h}}$	$?$
Affricate				$\mathrm{c}, \mathrm{c}^{\mathrm{h}}$		
Fricative		f	s			h
Lateral			l			
Trill			r			
Nasal	m		n		y	
Glide	w		y^{l}			

[^0]All consonants can occur in onset position. Only TL^{2} and Tw clusters are allowed in onset position. Coda position is subject to additional constraints. Only stops, nasals and glides can occur as a coda. In aher words, fricatives, and the liquids, /1/ and /r/ cannot occur in coda position. Additionally, the contrast between unaspirated and aspirated stops is neutralized in coda position (see coda neutralization of aspiration in 38). Only unaspirated voiceless stops are allowed here. The pattern of coda neutralization is shown below in (2):

$$
\begin{equation*}
\mathrm{p}_{\mathrm{h}}^{\mathrm{h}} \mathrm{p} \quad \text { 'fold’ } \tag{2}
\end{equation*}
$$

$$
\begin{array}{ll}
c^{\text {hát }} & \text { 'clear' } \\
\text { tàk } & \text { 'dig in' }
\end{array}
$$

Consonant clusters are not allowed in coda position. An undominated constraint $* \mathrm{CC} \#]_{\sigma}$ can account for this. Note that glides are not part of the nucleus in Thai. Evidence comes from the fact that *CVGR, *CVVGR, *CVGT and *CVVGT syllable types are never allowed. However, glides are allowed word-finally, thus indicating they are allowed in coda position.

way	'age, year'	*wayn	*wayp
yaay	'grandmother'	*yaayn	*yaayt
waaw	'sparkle, glitter'	*waawn	*waawk

(4) Vowel phoneme inventory

Vowel	Front	Central	Back
	Unrounded	Unrounded	Rounded
High	i i	$\dot{\mathrm{i} \dot{\mathrm{i}}:}$	u u:
Mid-high	e e:	$\partial \partial:$	o o:
Mid-low	$\varepsilon \varepsilon:$		$\partial \supset:$
Low		$\mathrm{a} \mathrm{a}:$	

[^1]\[

$$
\begin{aligned}
& \text { a. } \quad p^{h} a^{\text {p }}{ }^{h} *^{h} \text { háb } \\
& \text { b. } \quad c^{\mathrm{h}} \mathrm{át}^{\mathrm{h}} \quad *^{\mathrm{h}}{ }^{\text {ád }} \\
& \text { c. } \quad \text { tàak }^{\mathrm{h}} \text { *tàg }
\end{aligned}
$$
\]

(5) Syllables rhymes with glides

Vowel	Front		Central
	Unrounded	Unrounded	Rounded
High	iw		uy
Mid-high	e:w	ə:y	o:y
Mid-low	e:w	ay	כ:y
Low		ay a:y aw a:w	

Short and long vowels are contrastive. All front vowels can have [w] as a coda. As for the high front vowel, only the short vowel occurs with $\mathrm{a}[\mathrm{w}]$, while the mid front and low front vowels allow only long vowels to occur with the glide. No *iw, *ew, *ew are not allowed as rhymes in Thai. The back vowels, on the contrary, can only have [y] as a coda, and not [w]. *u:y, *oy, *'y are not allowed, and therefore they pattern the same way as the front vowels with respect to vowel length. The long mid central vowel can only occur with [y], while low central vowels can have both glides as a coda, and allow both short and long vowels. Note further that high central vowels are not compatible with a glide in coda position.
(6) Diphthong inventory

	Front	Central	Back
High	i i	i:	u u:
Mid		\downarrow	
Low		$\rightarrow a$	

There are five diphthongs in Thai; ia, ia, i: i:a, ua, ua. However, these short diphthongs are restricted to loanwords and onomatopoeia. These short diphthongs only occur with ? in coda position, as shown in (7). Diphthongs rise in sonority over their duration from the high vowels (i.e. $\mathrm{i}, \dot{\mathrm{i}}$ and u) which are less sonorous, to the more sonorous low vowel [a].
(7) kía *kíak loanword from Chinese 'wooden sandals'
yúa? loanword from Chinese 'angry'
phia? onomatopoeic 'a sound like that of slapping'
$\mathrm{p}^{\text {hùa? }} \quad$ onomatopoeic 'a sound like that of slapping'
Long vowel diphthongs such as [i:a], [i:a] and [u:a] allow all coda consonants that are legitimate codas including glides, but not ?

$\mathrm{p}^{\text {hûak }}$	*phûa?	'all'
fixa?		'story'
diaw		'one, single'
sǔ:ay		'beautiful'

Therefore, vowel length is not contrastive for diphthongs. It could also be that the coda is neutralized i.e., the coda-type is predictable based on the vowel length.

2.2 The Interaction of Thai Tones with Vowel Length

Thai has five contrastive lexical tones ${ }^{3}$ but not all syllable shapes are allowed to have all five tones. The data in (9) gives an example of CVV long vowel syllables that can have all five tones.
(9) a mid tone a low tone a falling tone
a high tone
a rising tone

$$
\begin{aligned}
& {\left[\mathrm{p}^{\mathrm{h}} \varepsilon:\right]} \\
& {\left[\mathrm{p}^{\mathrm{k}} \mathrm{\varepsilon}:\right]} \\
& {\left[\mathrm{p}^{\mathrm{h}}(\mathrm{r})^{4} \hat{\varepsilon} \hat{\mathrm{c}}\right.} \\
& {\left[\mathrm{pp}_{\mathrm{k}}^{\mathrm{k}}\right]} \\
& {\left[\mathrm{p}^{\mathrm{h}}(\mathrm{l} \check{\varepsilon}:]\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 'a raft' } \\
& \text { 'to spread' } \\
& \text { 'to broadcast' } \\
& \text { 'to lose' } \\
& \text { 'a wound' }
\end{aligned}
$$

Thai tones show a restriction on the co-occurrence between certain groups of tones and types of syllables. Syllables with two or three vowels can have five contrastive tones while those with one vowel can only have two possible tones: low or high. This suggests that there is a correlation between tonal contour and vowel length. That is, contour tones occur only in syllables with, minimally, two tone bearing units (TBUs). TBUs are defined in this paper as moras that are linked to a sonorant segment occurring in the rhyme of a syllable, assuming that long vowels and diphthongs constitute two segments.

Since all five tones can occur on vowels in CVV and CVR syllable types and only high and low tones occur on CVT syllable types, this suggests that codas play a crucial role with respect to restrictions on tone. Apparently, the former syllable types do allow contour tones,

[^2]
Sugunya Ruangjaroon

suggests that sonorant codas are TBUs if we assume that contour tones are sequences of level tones (Pulleyblank 1997). The fact that the latter syllable type only can carry level tones implies that obstruent codas are not TBUs. Assuming that the moras is the unit to which tones link, we still need take into account that tone does not seem to link to a moraic obstruent coda. Therefore, I define a TBU simply as any mora in the rhyme that is not linked to an obstruent coda. The constraint *obstruent must be undominated, in order to enforce this.
tone

This is structurally illustrated below. Note that the structure below also applies for the other values of tones. I use the low tone as an arbitrary example to illustrate this.
(10) Short vowels

Level tones

Contour tones
Falling:

Therefore, there is maximally one tonal autosegment per TBU. As for long vowels as shown in (11), sonorant codas do not link to any level tone. Two TBUs, on the other hand, are permitted to share the first level

[^3]tone and sonorant codas link to the second tone composing a contour tone.
(11) Long vowels

Level tones

Contour tones

Falling:

Rising:

Short vowel diphthongs (ia and ua) only occur with the default [?] coda (* Cia and ${ }^{*} \mathrm{Cua}$). Only high and low tones are allowed on Cia ? and Cua? syllable types. Additionally, they always surface with a $?$ coda. The restriction of level tones on short vowel diphthongs thus suggests that short vowel diphthongs are represented by one TBU. Long vowel diphthongs, in contrast, would contain two TBUs.
(12) Short vowel diphthongs (ia and ua) with default 3 coda
C i a ?

TBU
L
Cu a ?
TBU
L

Sugunya Ruangjaroon

(13) Long vowel diphthongs (i:a, i:a and ua) with codas. Level tones

Contour tones

I assume that both $[\mathrm{H} \mathrm{L} \mathrm{H}]_{\sigma}$ or $[\mathrm{L} \mathrm{H} \mathrm{L}]_{\sigma}$ violate an OCP-Tone constraint. This OCP-Tone constraint does not allow a syllable to contain two identical tonal autosegments whether they are adjacent or not. The constraint *obstruent-tone enforces that tones do not link to obstruent codas. There must also be a constraint that does not allow a TBU that links to two tonal autosegments. These two constraints are inviolable and must rank above the constraints that allow a single tone to link to a TBU or two TBUs. The faith-tone constraint accounts for the fact that tonal autosegments that are in the input tend to be preserved on the surface. The constraint ranking is as follows:

So far, we have seen that the distribution of Thai tones is restricted by vowel length. All five tones can occur on CVV and CV(V)(V)R syllable types. Only high and low tones can occur on CVT and CV? syllable types. Low and falling tones occur on CVVT syllable types. These generalizations are summarized in the table below. Note that "+"
means that the phenomena is attested in Thai syllables, while "-" means it is not attested in Thai syllables.
(15) Tonal distribution (Gandour 1974, Tumtavitikul 1993)

Syllable types	Mid	Low	Falling	High	Rising
CVV / CV(V)(V)R	+	+	+	+	+
CVT CV?	-	+	-	+	-
CVVT	-	+	+	-	-

Mid tones do not surface in CVT/CV? and CVVT syllable types which is unexpected given that mid is a level tone. I assume that the low tone is the default tone in stressed syllables since low tones surface in every syllable type as shown in table 15 , while the mid tone is the default in unstressed syllables. I will not present an analysis of unstressed syllables in this paper but it is an important fact that should be taken into account in a complete analysis. The next section shows how consonanttype has an effect on the tone of both the preceding and the following vowels.

3. THE INTERACTION OF THAI TONE WITH CONSONANT-TYPE

Consonants in Thai have been classified into three classes (Chotikasathian 1991, Tumtavitikul 1993) which correspond to aspirated voiceless obstruents (henceforth G), unaspirated voiceless and voiced stops $\left(\mathrm{C}_{2}\right)$ and sonorants $\left(\mathrm{C}_{3}\right)$.
(16) Consonant-type

Consonant classes	Bilabial	Labio- dental	Alveolar	Palatal	Velar	Glottal
$\mathrm{C}_{1}=[\mathrm{sg}]$	p^{h}	f	$\mathrm{t}^{\mathrm{h}}, \mathrm{s}$	c^{h}	k^{h}	h
$\mathrm{C}_{2}=[\mathrm{cg}]^{6}$	p, b		t, d	c	k	$?$
$\mathrm{C}_{3}=\mathrm{R}$	m, w		$\mathrm{n}, \mathrm{l}, \mathrm{r}, \mathrm{y}$		y	

The authors (Chotikasathian 1991, Tumtavitikul 1993) have suggested the pattern of tone splitting has resulted from historical sound

[^4]changes, which their synchronic analysis is not taken into account here. I, however, assume that this is not the case and that a synchronic analysis is valid. I, as a native speaker of the language, have observed the more refined generalization that a level high tone does not occur when a C_{2} is in onset position. In other words, with respect to onsets a full five-way tonal contrast is seen except when the onset is C . Additionally, with respect to codas, if the coda is an obstruent, then the five-way contrast is neutralized to a two-way contrast except when the onset is a C_{2} segment, in which case only the low tone is permitted. If the vowel is short, then this contrast is between the low tone and the high tone. If the vowel is long, then this contrast is between the low tone and the falling tone. As mentioned above, only high and low tones occur in CVT syllable types; and yet, high tones still do not occur when a G segment is in onset position. As for $\mathrm{C}_{1 / 3}$ VVT syllable types, only the low and falling tones can occur. In this case, it can be observed that the falling tone does not occur when a C_{2} is in onset position (${ }^{*} \mathrm{C}_{2} \hat{\mathrm{v} v T}$). In addition to this, [h] behaves more like a C_{2}. The high tone does not occur when $[\mathrm{h}]$ is in the onset. But more interestingly, falling tones do surface. Falling tones are also realized on vowels in $\mathrm{C}_{2} \mathrm{VV}$ and $\mathrm{C}_{2} \mathrm{VR}$ syllable types. These generalizations ${ }^{7}$ are shown in (17) and all monosyllabic words are listed in the appendices.

$\left.\begin{array}{l}(17) \\ \begin{array}{|c|c|c|c|c|c|}\hline \text { Syllable types } & \text { Mid } & \text { Low } & \text { Falling } & \text { High } & \text { Rising } \\ \hline \mathrm{C}_{1 / 3} \mathrm{VV} / \\ \mathrm{C}_{1 / 3} \mathrm{~V}(\mathrm{~V})(\mathrm{V}) \mathrm{R}\end{array} \\ \hline\end{array} \mathrm{+}\right)$

[^5]In addition to empirical evidence (see the appendices), there is also evidence from a word game. The high tone does not usually occur on * C_{2} v́vw syllable types. Additionally, morphemes in Thai are usually monosyllabic. When a monosyllabic word combines with another monosyllabic word to form a bisyllabic word, the tones do not change. The word games shown below reveal that bisyllabic or trisyllabic words conform to the monosyllabic generalization because they consist of two or three morphemes. The onsets are never switched. The rhymes of the second syllable are reversed with those of the first syllable. Tones can either remain stable or can be reversed along with the rhymes. The data is shown below.
(18)
W_{1}
WG_{2}
a. pǒm 'hair' sân 'short' pǒm.sân phân.som phan sôm 'short hair'
b. k^{h} àp 'to drive' rót 'car' k^{h} àp.rót k^{h} ót.ràp k^{h} òt.ráp 'to drive a car'

However, the data in (19) show that when rhymes are switched and carry their original tone along that the last syllable ends up creating a ${ }^{*} \mathrm{C}_{2} \mathrm{~V}$ vw syllable type. The reversed tones yield unacceptable outputs according to native speakers playing the game because high tones are not allowed on ${ }^{*} \mathrm{C}_{2}$ v́vw syllable types.
$\mathrm{WG}_{1} \quad \mathrm{WG}_{2}$
a. chá:w 'morning' bà:y 'afternoon' chá:w.bà:y *chà:y.bá:w chá:y.bà:w
b. ľ́:w 'already' kan 'self’ lé:w.kan *lan.ké:w lán.ke:w
 'arched eyebrows'
d. kê:w 'glass’ rá:w ‘crack' k̂̂:w.rá:w *ká:w.ré:w kâ:w.ré:w 'a cracked glass'

The next section shows an optimality theoretic account of Thai tone with respect to voweHlength and consonant-type.

4. OT ANALYSIS OF THAI TONES

4.1 OT Constraints

The fact that a low tone surfaces in every syllable type suggests that the low tone is the default tone in stressed syllables. It is therefore unmarked. Mid tone, on the other hand, is more marked than low tone in stressed syllables because it is not allowed in many syllable types. In this paper, I argue that the high tone is marked when it occurs in a syllable where an unaspirated stop occurs as an onset or a coda. I show that unaspirated stops have an effect on tone and that the effect involves either the obligatory presence of a low tone or the avoidance of a high tone.

These are the following constraints:
Observation 1:Unaspirated (both voiced and voiceless) stops in onset position are not compatible with a high tone vowel in the nucleus.
(20) $*[-\mathrm{SG}] \infty^{8}[\mathrm{v}]:$ When an onset is $[-\mathrm{SG}]$, no high tones are allowed on a following TBU. The two features do not have to be immediately adjacent but do need to be in the same syllable in order for there to be a violation.
Observation 2: All else being equal, an unaspirated obstruent can only be adjacent to a non-high tone. Due to observation 1, I assume that this force is present in both directions. While the coda must tolerate a preceding high tone in a short vowel, a long vowel presents an opportunity to a low tone on the second vowel, thus producing a 2 -way contrast between low and falling instead. This insertion of a low tone is done in order to avoid the high-tone vowel-[-SG] coda sequence that would otherwise result.
(21) *[v́] [-SG]: If the coda is an obstruent, a high tone autosegment incurs one violation if it immediately precedes this obstruent (note that this constraint is violable if the vowel is short).

[^6]Observation 3:An obstruent coda has the effect of shortening the vowel in the nucleus (this is testable via phonetic experimentation).
3a. This shortening effect places a burden on either phonetic perception or production, so that the 5way contrast is neutralized to a 2 -way contrast.
3b. The shortening effect places an especially strong burden on contour tones, so these tones are preferably excluded from the 2 -way contrast.
3c. The best 2 -way contrast among the 3 level tones is a simple high-low contrast, which is more readily perceivable than a low-mid or a highmid contrast, because the pitch difference is maximized in this pair. These observations and hypotheses account in the markedness constraint below:
(22) *[$\overline{\mathrm{v}}][-\mathrm{SG}]: \quad$ If the coda is an obstruent, mid tones are not allowed on an immediately preceding segment.

Observation 4: Since high tones are more marked than mid tones, *H is ranked higher than *M. The ranking *H >> *M. takes this into account (I assume that since the low tone is the least marked tone, there is no $* \mathrm{~L}$ constraint. If this constraint exists at all, it is inactive.
(23) *High tone (henceforth $* \mathrm{H}$):Each high tone vowel violates this constraint once.
(24) *Mid tone (henceforth *M): Each mid tone vowel violates this constraint once.

Observation 5: Since high, low and mid tones are permissible in Thai, faithfulness constraints (McCarthy \& Prince 1993) are required for tones to surface in the output.
(25) Max-H: Every high tone in the input must have a correspondent in the output.

IO-Faith (tone): The tonal autosegment that is linked to an input segment must also be linked to that segment in its output correspondent and vice versa.

Max-L is not active because markedness constraints against high and mid tone alone are enough to ensure low tone surfaces preferably.

Observation 6: Because tautosyllabic tone sequences are allowed with one-to-one TBU association in Thai, we need a constraint that is able to preserve the underlying linear ordering of H and L autosegments. Linearity-IO ensures that the outputs will be faithful to the linear ordering in the inputs.
(26) Linearity-IO: The output reflects the precedence structure of the input, and vice versa.

4.2 Rankings of Constraints

I will now show how each case can be accounted for by these constraints and their relative rankings. The fact that high tones do not occur when C_{2} segments are in onset position suggests that the two markedness constraints *[-SG] [[v́] and *[v́] [-SG] must rank above IOfaith (Tone) as shown in tableau (27). Even though the input is specified as being high tone, candidate (27a) with a low tone is selected optimally ${ }^{9}$.

[^7]

With this ranking, when the candidate is specified for the H tone, it violates the markedness constraints $*[-\mathrm{SG}] \infty[\mathrm{v}]$ and $* \mathrm{H}$. Candidate (27c) is ruled out because it violates $* \mathrm{M}$ even though these two candidates tie with respect to faithfulness constraint violations. This is an emergence of the unmarked effect because the low tone emerges rather than mid tone which is the least marked.

Due to the observation above in tableau (27), we expect that high tones will not occur on $\mathrm{C}_{2} \mathrm{VT}$. Likewise, we also observed that mid tones are not allowed in a short vowel syllable. Tableau (28) illustrates that *[$\overline{\mathrm{v}}]-[-\mathrm{SG}]$ can account for this observation. Though the input is specified with a mid tone, it is not selected because of a fatal $*[\overline{\mathrm{v}}]-[-\mathrm{SG}]$ constraint violation. By ranking $*[\overline{\mathrm{v}}]-[-\mathrm{SG}]$ above IO-Faith (Tone), candidate (28b) with a low tone is still selected optimally.
(28) pit 'close'

$$	*[-SG]8 [и́]	*[र́] [-SG]	*[v$]$ [-[-SG]	$\begin{aligned} & \text { IO-Faith } \\ & \text { (Tone) } \end{aligned}$	
a. $\begin{array}{ccc} \hline \mathrm{p} & \mathrm{i} & \mathrm{t} \\ \mathrm{~g} & \mathrm{~g} & \mathrm{~g} \\ {[-\mathrm{sg}]} & \text { TBU } & {[-\mathrm{sg}]} \\ & \mathrm{g}] \\ & \mathrm{M} & \\ \hline \end{array}$			*!		
b. $\begin{array}{ccc} \hline \mathrm{p} & \mathrm{i} & \mathrm{t} \\ \mathrm{~g} & \mathrm{~g} & \mathrm{~g} \\ {[-\mathrm{sg}]} & \mathrm{TBU} & {[-\mathrm{sg}]} \\ & \mathrm{g} \\ & \mathrm{~L} & \\ & \end{array}$				*	
c. $\begin{array}{ccc}\mathrm{p} & \mathrm{i} & \mathrm{t} \\ \mathrm{g} & \mathrm{g} & \mathrm{g} \\ {[-\mathrm{sg}]} & \text { TBU } & {[-\mathrm{sg}]} \\ & \mathrm{g} & \\ & \mathrm{H} & \end{array}$	*!	*		*	

Tableau (29), on the other hand, illustrates the case where falling tones occur on either a $\mathrm{C}_{2} \mathrm{VV}$ or $\mathrm{C}_{2} \mathrm{VR}$ syllable types. We would expect the absence of falling tones (HL) on these syllables with C_{2} onsets (e.g., $\mathrm{C}_{2} \mathrm{VV}$ and $\mathrm{C}_{2} \mathrm{VR}$). This is because the falling tone is a H-L sequence, and therefore $\mathrm{C}_{2} \hat{\mathrm{~V} v}$ would violate $*[-\mathrm{SG}] \infty[\mathrm{v}]^{10}$.

In order to capture this, we need the Max-H constraint to be ranked above the markedness constraints.

[^8](29) kê: 'fix' Unexpected falling contours occur in $\mathrm{C}_{2} \mathrm{VV}$

	Max-H	*[-SG] \propto [${ }^{\text {v }}$]	IO-Faith (Tone)	*H	*M	LinearityIO
a.	*!		*			
b.		**!	*	*		
c.	*!		**		*	
d.		*		*		*!
		*		*		

Both candidates (29a) and (29c) fatally violate Max-H once. Candidates (29b) fatally violates $*[-S G] \infty[\mathrm{v}]$, while candidate (29d) violates Linearity-IO. However, both candidate (29d) and (29e) tie in violating the markedness constraint $*[-\mathrm{SG}] \infty[\mathrm{v}]$ and $* \mathrm{H}$. However, (29e) wins because of the linearity constraint. Therefore, it surfaces as the optimal output.

Candidate (29d) on the other hand is unfaithful to its tonal input with respect to its linear order and so is eliminated.

The next tableau confirms that Max-H must outrank $*[-\mathrm{SG}] \infty[$ v́ $]$ because the high tone is allowed to surface on $\mathrm{C}_{1 / 3} \mathrm{VT}$ syllable types. As observed, only high and low tones surface in $\mathrm{C}_{1 / 3} \mathrm{VT}$ syllable types. But when an input $\mathrm{C}_{1 / 3}$ VT syllable type is specified for a high tone, *[v́] [-SG] militates against the optimal output with the high tone. Thus, it is because of the Max-H constraint that the optimal candidate (30b) is selected optimally as shown in tableau (30).
(30) p^{h} ét 'diamond'

$$	Max-H	*[-SG] ∞ [${ }^{\text {c }}$]	*[v́] [-SG]	IO-Faith (Tone)	
a.	*!			*	
b.			*		
$$	*!			*	

We encounter another problem, however, in that if the Max-H constraint is ranked above $*[-\mathrm{SG}] \infty[$ v́], this would potentially allow an input with a high tone to surface on C2VV syllable types-a phenomena which is unattested in Thai. Additionally, falling and rising tones do occur on $\mathrm{C}_{2} \mathrm{VV}$ syllable types. In order to allow HL and LH sequences to
surface but not H, we need a distant parameter on the markedness constraint $*[-S G] \infty\left[v^{\prime}\right]$. This is shown in tableau (31).

	Max-H	*[-SG] ∞ [v]	IO-Faith (Tone)	*H	*M
a.		**! ${ }^{11}$		*	
		*	*	*	
		*	*	*	
d.	*!		*		

Because of the distance condition on the markedness constraint, candidate (31a) with the two TBUs that are linked to the single high tone autosegment violates $*[-\mathrm{SG}] \infty[\mathrm{v}]$ twice. Therefore, it is eliminated. Candidate (31d) fatally violates Max-H and it is therefore ruled out. Candidate (31b) and (31c), on the other hand, tie on all constraints. With

[^9]this constraint ranking, either can surface faithfully ${ }^{12}$. Some low- ranking will presumably decide between these two candidates, but it does not matter which will win, since both are attested Thai outputs. There is however one case where a high tone can never occur in a $\mathrm{C}_{2} \mathrm{VT}$ syllable type. But the analysis so far predicts it can surface as shown in tableau (32).

Candidate (32c) with a low tone cannot surface faithfully because Max-H is ranked above $*[-\mathrm{SG}] \infty[\mathrm{v}]$. One way to capture this problematic case is to use a conjoined version (Smolensky 1997) of the two markedness constraints $*[-\mathrm{SG}] \infty[$ v́ $\& *[\mathrm{v}] \infty[-\mathrm{SG}]$. The conjoin version is such that both members can occur at a distance: $*[-\mathrm{SG}] \infty[\mathrm{v}] \& *[v ́] \infty[-$ SG]. This conjoined constraint will not be violated if both of the

[^10]constraints are not violated. Therefore, candidates that violate exactly one of the conjoined constraints will not be ruled out by it. This conjoined constraint must outrank both the simple markedness constraints and also the faithfulness constraint in order to allow the optimal candidate to surface faithfully. This is illustrated below.

(33) * $\mathrm{C}_{2} \mathrm{i} \mathrm{T}$				
$\begin{array}{ccc} \hline \mathrm{p} & \mathrm{i} & \mathrm{t} \\ \mathrm{~g} & \mathrm{~g} & \mathrm{~g} \\ {[-\mathrm{sg}]} & \text { TBU } & {[-\mathrm{sg}]} \\ & \mathrm{g}] & \\ & \mathrm{H} & \end{array}$	$\begin{gathered} *[-\mathrm{SG}] \infty[\mathrm{v}] \\ \& \\ *[\mathrm{v}] \propto[-\mathrm{SG}] \end{gathered}$	$\begin{gathered} \text { Max- } \\ \mathrm{H} \end{gathered}$		 IO- $* H$ $* M$ Faith (Tone)
$$		*		*!
$\begin{array}{cccc}\text { b. } & \mathrm{p} & \mathrm{i} & \mathrm{t} \\ & \mathrm{g} & \mathrm{g} & \mathrm{g} \\ & {[-\mathrm{sg}]} & \mathrm{TBU} & {[-\mathrm{sg}]} \\ & & \mathrm{g} & \\ & & \mathrm{H} & \end{array}$	*!			
c.		*		

The candidate with a low tone, (33c), is saved by ranking the conjoined constraint above Max-H. Candidate (33b) however violates the conjoined constraint which results in a fatal violation. Candidate (33c) becomes the optimal candidate since it does not violate $* M$, while (33a) does. Thus, the proposed constraint ranking succeeds in selecting the optimal candidate.

Let us now look at the case of C2VVT where only a low tone can surface. No high, rising or falling tone is allowed here.

In this tableau, the distance parameter included in the markedness constraint in the conjoined constraint helps eliminate candidate (34a) and (34b) with the HL and LH sequence. The second TBU that follows the C_{2} does violate $*[-\mathrm{SG}] \infty[\mathrm{v}]$ in (34b) for example. Candidates (34a), (34b) and (34d) are therefore ruled out by the conjoined constraint. This constraint ranking provides an explanation of the restricted distribution
of tones in $\mathrm{C}_{2} \mathrm{VVT}$ and why no rising or falling tone surfaces. Candidate (34e) with a mid tone however violates $* \mathrm{M}$. As predicted, candidate (34c) surfaces as the optimal output even with faithfulness constraint violations. Tableau (35), on the other hand, illustrates the case where only falling tones can surface in $\mathrm{C}_{1 / 3}$ VVT syllable types. In this tableau, the input is specified for a rising tone and yet results in a falling tone on the surface.

	$\begin{gathered} *[S G] \propto[\text { v́ }] \\ \& \\ *[\text { v }] \infty[\text { SG }] \end{gathered}$	Max-H	*[v́] [SG]	$\begin{gathered} \text { IO-Faith } \\ \text { (Tone) } \end{gathered}$	*H	*M	$\begin{aligned} & \text { Lineari } \\ & \text { ty-IO } \end{aligned}$
							*
			*!		*		
		*!		*			
			*!	*	*		
		*!		**		*	

This tableau shows that $*[v][-S G]$ must be applied locally that candidates (35b) and (35d) fatally violate it, but (35a) does not. Candidate (35c) and (35e) are ruled out because of fatal Max-H violations. We saw that the proposed ranking makes the right prediction and can account for the fact that $\mathrm{C}_{1 / 3} \mathrm{VVT}$ syllables surface with only a low and a falling tone. This also is consistent with Zhang's analysis
(2002) that falling tone is found to correlate with shorter vowel duration and that the obstruent coda has the effect of shortening the vowel. The optimal output is therefore candidate (35a) even with a single $* \mathrm{H}$ violation. The Linearity-IO constraint must be ranked below *[-SG] [र́] in order to eliminate the candidate with a rising tone. The next tableau shows a case where the L tone is specified in the input. With this ranking, the L tone surfaces, as expected.
(36) fà:k 'give'

V/ L	$\begin{gathered} *[-\mathrm{SG}] \propto[\mathrm{v}] \\ \& \\ *[\mathrm{v}] \propto[-\mathrm{SG}] \end{gathered}$	Max-H	*[v́] [-SG]	IO-Faith (Tone)	*H	*M
				*!	*	
			*!	*	*	
\/ L						
			*!	*	*	
				*!		*

So far, we have seen that ranking the conjoined constraint $*[-\mathrm{SG}] \infty[\mathrm{v}] \& *\left[\mathrm{v}^{\prime}\right] \infty[-\mathrm{SG}]$ above the faithfulness constraint (Max-H), which is in turn ranked above the simple markedness constraints $*[-\mathrm{SG}] \infty[\mathrm{v}]$ and $*[\mathrm{v}][-\mathrm{SG}]$, can capture all the cases shown in table (17):
${ }^{*} \mathrm{C}_{2} \mathrm{v} \mathrm{R},{ }^{*} \mathrm{C}_{2} \mathrm{v} v,{ }^{*} \mathrm{C}_{2}$ v́ $\mathrm{T}, \mathrm{C}_{1 / 3} \mathrm{v}^{*} \mathrm{~T},{ }^{*} \mathrm{C}_{1 / 3} \mathrm{v} v \mathrm{~T}$, and ${ }^{*} \mathrm{C}_{2}$ v́vT.

4.3 [-SG] is Lexically Distinctive in Thai

The following data show that the prediction of my analysis is borne out in that the $[-\mathrm{SG}]$ feature is lexically distinctive and has an effect on the tone of the following vowel. When the suffix $-a$? is added to monosyllabic words then the laryngeal feature of a coda is neutralized. The coda is then resyllabified as part of the onset of the following syllable. Tones are then assigned according to the [-SG] value of the onsets.

a.	lô:p	lo:.phá?	'greed'
b.	$\mathrm{t}^{\text {ha }}$: p	$\mathrm{t}^{\mathrm{h}} \mathrm{u}: . \mathrm{pa}$ a	'a pagoda'
c.	krò:t	kro:.t ${ }^{\text {hap }}$	'angry'
d.	$c^{\text {hâat }}$	$c^{\text {ha }}$: tà?	'birth'

The data in (37) show that an underlying high tone on -á? is neutralized to a low tone when it follows C_{2} as expected. I would argue that this suffix is underlyingly high, but this H is neutralized to L when following a $[-\mathrm{SG}]$ obstruent.

When the infix (-am) is inserted after the initial consonant of a monosyllabic word, the L and H tones in surface-derived forms (38a'-f') remain faithful to their locus in the underlying-underived forms in (38a-f). We see that this infix is lexically specified as mid tone. Since there is no high tone present, the features $[-\mathrm{SG}]$ and $[+\mathrm{SG}]$ do not force the tones on the adjacent vowel to change. The underlying tonal value surfaces on the vowel of the second syllable and there are no violations of the two markedness constraints: *[-SG] $8[$ v́] and *[v́] [-SG]. That is, since there are no violations of the high ranked markedness constraints, the underlying tonal values are allowed to surface.

Underlying-underived form Surface-derived form
a. trù:at 'to inspect' a' tam.rù:at 'policemen'
b. tràt 'to speak' b' dam.ràt 'speech' (royal)
c. prà:p 'to subdue' c' bamrà:p 'subdue'(poetic)
d. cà:y 'to pay' d' cam.nà:y 'to distribute'
e. k'róp 'to be complete' e' k^{h} am.róp 'time’ (poetic)
f. pák 'to stay' f' pham.nák 'to lodge' (poetic)

4.4 Marked Cases

In this section, I suggest further research on the following interesting cases which include the behavior of $/ \mathrm{h} /$, tones on $\mathrm{C}_{2} \mathrm{VT}$, intensified reduplic ation and tones in onset clusters.

4.4.1 The behavior of $/ \mathrm{h} /$

In Thai, $/ \mathrm{h} /$ is classified as a C_{1} segment and this would predict that $/ \mathrm{h} /$ should behave in the same way as the [+SG] obstruents. However, /h/ behaves differently phonologically. /h/ patterns with the [-SG] obstruents in the following way: high tones do not occur in these syllable types (*hv́V, *hv́N, *hv́G and *hv́T) when /h/ is in onset position. Falling tones also do not occur in *hv̂:T syllable types. The data is shown in (39). The fact that high tones are absent in syllables with $/ \mathrm{h} /$ as an onset is consistent with $/ \mathrm{h} /$ being specified as [-SG] phonologically in Thai. /h/ thus patterns in an unexpected way with respect to its effect on following tone, given its phonetic characteristics. If it is phonetically like a C (since it is voiceless) but phonologically like a C_{2} (as my data suggests), then this would possibly mean that the phonological specification of $/ \mathrm{h} /$ does not match its phonetic spell-out. The behavior of $/ \mathrm{h} /$ is interesting and requires further research.

Syllable Shape	Mid	Low	Falling	High	Rising
CVV				hí: (onomatopoeia)	hǐ: 'vagina' (V)
CVV		hè: 'parade'			hě: ‘a fishing net'
CVV	hi: (onomatopoeia)				hì: 'dare' (S)
CVV		hà: 'proud'			
CVV	ha: (onomatopoeia)	hà: 'cholera'	hâ: 'five'		ha: 'look for'
CVV					hû: 'ears'
CVV	ho: (onomatopoeia)	hò: 'yell'			

Thai Consonant-tone Interactions in OT

CVV	ho: 'a helicopter'	hò: 'wrap'			ȟ̌: ‘ a dormitory'
CVN					hìn 'rock'
CVN					hen 'see'
CVN		hàn 'cut'			han 'turn back'
CVN		hùn 'mannequin'	hûn 'share'		
CVG			hîw 'carry'		hīw 'hungry'
CVG		hày 'bad' (S)			
CVG			hây 'give'		hay 'jar'
CVG		hàw 'bark'			haw 'a flea'
CVT		hèp 'flea'			
CVT		hùp 'close'		húp (onomatopoeia)	
CVT		hìt 'scabies'		hít 'popular' (L)	
CVT		hèt 'mushroom'		hét 'do' (L)	
CVT				hitt (onomatopoeia)	
CVT		hàt 'train'			
CVT		hòt 'shrink'			
CVT		hàk 'break'			
CVT				húk 'hook (L)	
CVT		hòk 'six'			
CVVT		hìp 'a box'			
CVVT		hè:p 'hoarse'			
CVVT		hà:p 'carry'			
CVVT		hòp 'carry'			
CVVT		hè̀t 'cause'			
CVVT		hì:t 'asthma'			
CVVT		hà:t 'beaches'			
CVVT		hùt 'a wart'			
CVVT		hò:t 'cruel'			
CVVT		hè:k 'open'			
CVVT		hà:k 'if'			

Sugunya Ruangjaroon

CVVT		hว̀: 'a lance'			
CVVG					ha:y 'missing'
CVVG			hâ:w 'daring'		ha:w 'yawn'
CVVG					hǒ:y 'exhausted'

4.4.2 High tones on $\mathrm{C}_{2} \mathrm{~V}$? syllable types

Given that a glottal stop coda also has a $[S G]$ feature value, this would lead one to conclude that / $/$ / patterns with the other stop codas (p, t and k). Note that there is coda neutralization in which stops lose their distinctive marked value of [voice] and [SG] in Thai. Thus, codas can only be [-SG] on the surface. As previously discussed, [-SG] correlates with low tones. In the case of a $\mathrm{C}_{2} \mathrm{~V}$ syllable types, both onset and coda are $[-S G]$. Therefore, we would expect that only a L tone can surface. The data in (40) shows the contrast of five examples of loanwords that high tones do occur when C_{2} segments are onsets and $?$ is a coda.
(40) Syllable shape $=\mathrm{C}_{2}$ v́?

Mid	Low	Falling	High	Rising
	pèr 'paste'		p ε ? 'Chinese men’ (L)	
	pà? 'mend'			
	pù? 'patch'			
	pò? 'put on'			
	bì 'break'			
	bè? 'grin'			
	bè? 'open up'		bér (onomatopoeia)	
			bá? (onomatopoeia)	
	bù? 'line'			
	bìr 'cushion'			
	tì 'blame'			
	tè̀ 'kick'			
	tè? 'touch'			
			tó? 'table' (L)	
	dà? 'no direction'			
	dù? 'scold'			
	ḋ̀? 'fracture'			
	cà? 'meet'			
	cà? 'will'		cá? 'final particle'	
	cù? 'hold'			
	cò? 'pierce'			
	kèr 'take out'			
	kà2 'calculate'			
	kû̀ 'make up'			
	kı̀⿳亠 'cling'			
	T71 'poop'			

As mentioned, loanwords and onomatopoeia that constitute exceptions to the regular behavior with respect to tone-consonant interaction are excluded from the Thai nativized lexicon and also from the present analysis. However, there is one lexical word, (cá? 'final particle') which can be considered as a counterexample to the generalization that is part of the native Thai lexicon. The tone is not determined in the same way it usually is where it is a properly of the
lexical item. This H tone serves a syntactic function as the polite form of the question particle, and thus can be thought of as being a separate morpheme on its own.
$\begin{array}{llll}\text { a. } \quad \text { pay nay ma: cá? } \\ \text { go where come } & \text { Q particle } \\ & \text { Where } & \text { did }\end{array}$ Where did (you) go?
b. pay talàit maa cà? go market come final particle (I) went to the market.

4.4.3 Intensified reduplication

Intensified reduplication data provide examples where the lexical H tone surfaces in Thai. The reduplicant copies the entire root and is lexically specified as having the shape of $\mathrm{C} \mathrm{V}^{\prime} \mathrm{C}-\mathrm{CVC}$. This H tone is part of the reduplicant, and denotes intensification. (42) shows that unexpected high tones surface after C_{2} segments in all of the following syllable types with a C_{2} onset: $\mathrm{C}_{2} \mathrm{VV}, \mathrm{C}_{2} \mathrm{VN}, \mathrm{C}_{2} \mathrm{VG}$ and $\mathrm{C}_{2} \mathrm{~V}(\mathrm{~V}) \mathrm{T}$. Intensive reduplication with a H tone
a. bíabì̀:a
b. dókdòk
c. cíwcīw
d. hómhǒm

Intensive with a H tone

e. cít:	'very sour'	
f.	pé:t	'very red'
g.	tíit	'very small'

The H tone must be underlyingly present in the reduplicant as it is invariably high-tone on the surface. This is an example of fixed prosody. $\mathrm{Max}_{\mathrm{O}-\mathrm{R}} \mathrm{H}$ ensures that if there is a surface H tone present on the base, then there must also be a high tone present on the reduplicant and therefore, this constraint must rank highly. This is illustrated in the tableau in (43). The optimal candidate is faithful to the input, resulting in the violation of both the conjoined constraint and the simple markedness
constraints. Candidate (43b), on the other hand, is excluded because the lexical H tone is not retained in the input reduplicant.

4.4.4 What determines tone in onset clusters?

Thai allows certain consonant clusters in onset position. These clusters include stops followed by the liquids or [w]: as shown $\mathrm{pl}, \mathrm{pr}, \mathrm{p}^{\mathrm{h}} 1, \mathrm{p}^{\mathrm{h}} \mathrm{r}, \mathrm{tr}$, $\mathrm{kl}, \mathrm{kr}, \mathrm{kw}, \mathrm{k}^{\mathrm{h}} \mathrm{l}, \mathrm{k}^{\mathrm{h}} \mathrm{r}, \mathrm{k}^{\mathrm{h}} \mathrm{w}$. I have observed that a high tone does not surface in any cluster containing a C_{2} obstruent. Another way to say this is that the high tone does not surface in syllables with onset clusters containing C_{2} followed by a sonorant. Note that L and R are defined as liquid and sonorant respectively. All five tones however occur in LVR syllable types. Examples of the data are shown below.
(44)
a. pruy
'to season'
a^{\prime}
lun
'uncle'
b. plà η 'glowing'
b^{\prime}
c. plôn
'rob'
d. -
e. klǒn 'thin hair'
c^{\prime}
d^{\prime}
d^{\prime}
e^{\prime}
là \cline { 1 - 1 } 'flow'
lâ:m 'an interpreter'
e' rún 'rainbow'
riay 'yellow'
e.

The observation here is that the sonorant seems invisible to the regular consonant tone generalization. That is, there is no restriction on tones to prohibit from surfacing following a sonorant. When C_{1} and C_{3} are found in initial onset clusters, all five tones can occur as is seen in (45) below.
(45) a. phran 'a hunter' a' wan 'day'
b. kh lùy 'a flute' b' lòn 'to fall'
c. knwâm 'to overturn' c' lên 'to play'
d. khráy 'times' d' lín 'tongue'
e. k'wan 'courage' e' la:n 'niece or nephew'

The H tone does not occur when a C_{2} obstruent is initial in C_{2} RVT syllable types as shown in (46), while both H and L tone occur in $\mathrm{C}_{1 / 3}$ VT are syllable types as shown in (47).

a. pràp	'fine'	a^{\prime}	lùt	'to come off'
b. -		b^{\prime}	rót	'a car'
a. p làk	'to push'	a^{\prime}	làk	'principle
b. k'róp	'complete'	b^{\prime}	róp	'battle'

The same generalizations that were made for $\mathrm{C}_{2} \mathrm{VR}$ and $\mathrm{C}_{2} \mathrm{VT}$ syllable types, can also be made for in $\mathrm{C}_{2} \mathbf{R V R}$ and $\mathrm{C}_{2} \mathbf{R V T}$. Three voiced consonant clusters (liquid and $/ \mathrm{w} /$) which are closer in sonority and position to the vowels than the stops and do not have an effect in triggering H tone in this environment (44d and 46b). This suggests that liquids are transparent to the laryngeal effect of C_{2} that precedes them. Thai vowels have a surface tone that is predictable based on the [SG] value of the initial onset. A [-SG] feature value of the first member of an onset cluster has an effect where it assigns a tone value to a following vowel, but [+SG] onset segments do not. The fact that sonorants are always more proximal to the vowel when in an onset cluster is because of an independent phonotactic constraint (sonority sequencing). My analysis correctly predicts this by using the distance parameter in the conjoined constraint $*[-S G] \infty[$ v́ $\& *[$ v́ $] \infty[-S G]$.

(48) plày 'glowing'							
	$\begin{gathered} *[-\mathrm{SG}] \infty[\mathrm{v}] \\ \& \\ *[\mathrm{v}] \infty[-\mathrm{SG}] \end{gathered}$	$\begin{gathered} \text { Max- } \\ \mathrm{H} \end{gathered}$	*[-SG] $¢ 0$ [v́]	*[v́] [-SG]	IO-Faith (Tone)	*H	*M
a.		*!			*		
b.			**!			*	
c.		*!			*		*!
$\begin{array}{cccc}\text { d. } & p & 1 & a \\ \mid & & y \\ {[-\mathrm{sg}]} & & \text { TBU TBU } \\ & & \mid & \mid \\ & & & \text { H } \\ & l\end{array}$			*		*		
e.			*		*		

Notice that there is a gap in the set of allowed consonant clusters above. [tl] is not in the list because it is not a genuine onset cluster. [a] is epenthesized between the two consonants and brakes the homorganic CC-cluster into two syllables. Mid tone is derived in the first unstressed syllable and only the L tone is found on the surface in the second
syllable. However, when the first syllable becomes stressed in citation form, the low tone does surface in [tà?lok], for example.
a. talòk *talók
‘funny’
b. talòp
c. tab̀:
*talóp 'to be blown up like a cloud'
*tab:t
'through'
d. talà
*talá:t
'market'
(49) also provides strong evidence that [-SG] is compatible with low tones and in this case the tone of the second syllable is determined by the [SG] value of the initial C. My analysis has dealt with tautosyllabic markedness co-occurrence constraints i.e. $*[-\mathrm{SG}] \infty[$ v́ $]$ and the others only apply within the syllable.

5. THE REMAINING ISSUES

In past research on tones, two tonal autosegments are assumed in order to derive any surface tone. For Thai, there are five tones which must be derived. Four of them are trivially derived as H, L, HL, LH. However, the question remains "can we derive mid tones and if so, then how? " In this paper, I assume there is a third tone in Thai which is Mid. The markedness constraints conspire so that the low tone acts as the default tone. If we did not assume a third tonal autosegment, this would force us to posit a sequence of two autosegmental tones from which the surface mid tone is somehow derived in Thai. This is possible in future research but it is out of the scope of this paper. The analysis proposed here relies on a 3-way tonal system. The constraint $* \mathrm{M}$ eliminates candidates with mid tone in the contexts needed.

This paper raises another question, namely how $*[-\mathrm{SG}] 8[$ v́] and *[v́] [-SG] are phonetically grounded and whether this is true of language in general. I leave this for further phonetic research on the interaction of tone with consonant type in Thai.

6. CONCLUSION

I have argued that in addition to previously noted interactions of tone and vowel length, there is also a consonant-tone interaction in Thai phonology. The present analysis posits that the laryngeal properties of a consonant affect the tone on a following vowel. This has an implication for Thai phonology in that the H tone is always lexically marked, and the L tone is a default tone in stressed syllables while the mid tone is only the default in unstressed short syllables.

Both voiced and voiceless unaspirated stops have an underlying [-SG] feature value and these consonants show an incompatibility with a following H tone autosegment. The constraints, $*[-\mathrm{SG}] 8$ [र́] and *[v́] [-SG] reflect that Thai tones are sensitive to a [-SG] feature value of both edges of the syllable (i.e., onset and coda). The faithfulness constraint Max-H must be ranked above the simple markedness constraint because high tones do surface on $\mathrm{C}_{1 / 3} \mathrm{VT}$ syllable types. Moreover, the conjoined constraint is needed to account for the fact that the high tone is allowed on C_{2} VT syllable types and also the restricted distribution of falling and rising tones on C_{2} VVT syllable types. A distance parameter must be set for co-occurrence markedness constraints to either strict segmental adjacency (in the case of *[v́] [-SG]) or to a setting that allows intervening segments (in the case of $*[-\mathrm{SG}] 8$ [v́]). Since Max-H outranks the simple markedness constraint, it potentially allows input with a high tone to surface on C2VV. We thus need to impose a long-distance parameter on the $*[-\mathrm{SG}] 8$ [v́] constraint so that the constraint can apply at a distance in order to allow the HL and LH contour tones to surface. In order to capture all the restrictions, we rank the markedness constraints above the faithfulness constraint (IO-Faith (Tone)). The summary of the constraint ranking for Thai tones are as follows: $*[-\mathrm{SG}] \infty[$ v́ $] \& *[v ́] \infty[-\mathrm{SG}] \gg$ Max-H $\gg *[-\mathrm{SG}] \infty[$ v́ $]$,
*[v́] [-SG] >> *[v] $]-[-\mathrm{SG}] \gg$ IO-Faith (Tone) >> *H >> *M. Thai provides evidence that tone can be either lexically distinctive or contextually dependent on laryngeal features of both preceding and following consonants. This is consistent with the phonological claims concerning consonant-tone interactions cross-linguistically (Bradshaw 1999, Hyman 2001).

Sugunya Ruangjaroon

REFERENCES

Bradshaw, Mary M. 1999. A Crosslinguistic study of consonant-tone interaction. Ph.D Dissertation, Ohio State University.
Chotikasathian, P. 1991. Thai linguistics for teachers (In Thai). Sukhothaithammathirat, Bangkok, Thailand.
Gandour, Jack. 1974. On the representation of tone in Siamese. UCLA Working Papers in Phonetics 27, 118-146.
Hyman, Larry M. 2001. Tone systems. In Martin Haspelmath, Ekkehard König, Wulf Oesterreicher, \& Wolfgang Raible (eds.) Language typology and language universals: an international handbook, vol. 2. Berlin \& New York: Walter de Gruyter, 1367-1380.
Intrasri, Jiraporn. 2001. Topics in Thai tonology: an acoustic investigation and some pedagogical applications. Ph.D. Dissertation, University of Delaware.
McCarthy, John and Alan Prince. 1993. Generalized alignment. In Geert Booij \& Jaap van Marle (eds.), Yearbook of Morphology, 79-153. Dordrecht: Kluwer.
Morén, Bruce and Elizabeth Zsiga. 2006. The lexical and post-lexical phonology of Thai tones. Natural language and linguistic theory 24, 113-178. Springer.
Ladefoged, Peter and I. Maddieson. 1996. The sound of the world's languages. Oxford: Blackwell.
Prince, Alan and Paul Somlensky. 1993. Optimality theory: constraint interaction in Generative grammar. Report. New Brunswick, NJ: Rutgers University Center for Cognitive Science.
Pulleyblank, Douglas. 1997 Optimal theory and features. In Diana Archangeli and D.Terence Langendoen (eds.), Optimal Theory: an Overview, 59-101. Oxford: Blackwell.
Smolensky, Paul. 1997. Constraint interaction in generative grammar II: Local conjunction, or random rules in universal grammar. Proceedings of the Hopkins Optimality Theory Workshop/ University of Maryland, Mayfest. Baltimore MD.
Tumtavitikul, Apiluck. 1993. Perhaps, the tones are in the consonants? Mon-KhmerStudies 23:11-41.
Zhang, Jie. 2002. The effects of duration and sonority on contour tone distribution: Typological surveyand formal analysis. New York: Routledge.

Sugunya Ruangjaroon
Department of Linguistics
Srinakharinwirot University
Bangkok, 10110 Thailand

APPENDIX A

All five tones can occur on CVV when C_{1} and C_{3} are onsets.

C_{1} and C_{3}					
Syllable Shape	Mid	Low	Falling	High	Rising
CVV			$\mathrm{p}^{\mathrm{h}} \mathrm{i}$: ‘older sister'		$\mathrm{p}^{\mathrm{h}_{\mathrm{i}} /{ }^{\prime} \mathrm{a}}$ ghost'
CVV	p^{h} ¢: 'a satin'	$\mathrm{p}^{\mathrm{T}} \mathrm{E}$: 'spread'	$\begin{aligned} & \mathrm{p}^{\mathrm{th} \mathrm{E}:} \\ & \text { 'broadcast' } \end{aligned}$	$\mathrm{p}^{\mathrm{h}} \mathrm{E}^{\text {c ' }}$ 'ose'	$\mathrm{p}^{\mathrm{k}} \mathrm{k}$: ‘a wound'
CVV				phà: 'drivel'	$\begin{aligned} & \mathrm{p}^{\mathrm{hy}} \\ & \text { 'forget' } \end{aligned}$
CVV	p^{h} a: 'take'	phà 'cut'	$\mathrm{p}^{\mathrm{h} a ̂: ~ ‘ c l o t h e s ’ ~}$	phá: 'a knife'	$\mathrm{p}^{\mathrm{h}} \mathrm{a}:$ 'a cliff'
CVV	$\begin{aligned} & \mathrm{p}^{\mathrm{h} u}, \\ & \text { 'classifier' } \end{aligned}$		$\mathrm{p}^{\text {hû: 'a tuft' }}$		
CVV	p^{h} : ' 'Bo tree'	$\begin{aligned} & \hline \text { phò: } \\ & \text { 'emerge' } \end{aligned}$			p^{h} o: ‘fly'
CVV	p^{h} : 'enough'		$\mathrm{p}^{\text {tr }}$: 'father'	$\begin{aligned} & \mathrm{p}^{\mathrm{h}_{\mathrm{J}}} \\ & \text { 'complain' } \\ & \hline \end{aligned}$	
CVV	Fi: ‘free’ (L)				fi: ‘smallpox'
CVV	fe: ‘fair' (L)				
CVV	fa: 'fur' (L)				
CVV		fà: 'go through	fâ: ‘a blemish'	Fá: 'blue'	fa: ‘lid'
CVV	Fu: 'puffy'				
CVV		fò: 'wilt'		fó: 'neat' (S)	
CVV	$\mathrm{t}^{\text {hi: }}$ 'time'	$\mathrm{t}^{\mathrm{h} i \mathrm{i}}$ 'frequent'	$\mathrm{t}^{\text {h} \hat{i}: ~ ' p l a c e ' ~}$		
CVV	the: 'throw'				
CVV				$\mathrm{t}^{\mathrm{h}} \mathrm{\varepsilon}$: 'real'	
CVV			tre: 'blunt'		t'te: 'hold'
CVV	$\mathrm{t}^{\mathrm{h}} \partial$: 3 rdsg person’				
CVV	$\mathrm{t}^{\text {ha: }}$ 'paint'		$\mathrm{t}^{\text {hâ: ' }}$ 'if'		
CVV			thâ: 'blunt'		t'ú: 'mob'
CVV	$\mathrm{t}^{\text {h }}$: 'minor'	$\mathrm{t}^{\mathrm{h}} \mathrm{o}$: (exclamation)	$\mathrm{t}^{\mathrm{h}} \mathrm{o}$: (exclamation)		$\mathrm{t}^{\mathrm{h}} \mathrm{O}$: exclamation

Sugunya Ruangjaroon

CVV	t^{h} : 'weave’	thò: 'pole'	$\mathrm{t}^{\text {h}}$: : a pipe'	$\mathrm{t}^{\mathrm{h} \text { T: }}$ 'discourage '	
CVV		sì: ‘four'		síi ‘dead’ (S)	si: 'color'
CVV		sè: 'snoop'	sê: 'a whip'		
CVV		sì: 'a media'	sti: 'honest'	sî: 'buy'	
CVV			sâ: 'stupid' (S)		
CVV	Sa: 'go down'		sâ: ‘show off’ (S)		
CVV		sù: 'from'	sû: 'fight'		
CVV	ss: 'a fiddle'	ṡ̀: 'show'		$\begin{aligned} & \text { só: ‘a Chinese } \\ & \text { lady’ (L) } \\ & \hline \end{aligned}$	š̌: ‘flow copiously'
CVV	$\mathrm{c}^{\text {hi }}$: 'a nun'	chì: 'urinate'			
CVV					c^{h} e: 'deviate'
CVV	$c^{\mathrm{h}} \varepsilon$: ‘share’ (L)		$\mathrm{c}^{\text {h}} \mathrm{c}^{\text {: 'soak' }}$		$\begin{aligned} & \mathrm{c}^{\mathrm{h}} \mathrm{c} \text { : } \\ & \text { 'reveal' } \end{aligned}$
CVV			$\mathrm{c}^{\text {max }}$: 'name'		
CVV	$\mathrm{c}^{\mathrm{h}} \mathrm{a}$: 'numb'			c ${ }^{\text {há: }}$ 'slow'	
CVV	$\mathrm{c}^{\mathrm{h}} \mathrm{u}$: 'raise'			chú: 'have an affair'	
CVV	c^{n} : 'show' (L)				
CVV			chò: 'a bunch'		
CVV	$\mathrm{k}^{\mathrm{h}} \mathrm{i}$: 'key’ (L)	k ${ }^{\text {hi: }}$ 'ride’	k ${ }^{\text {hî: }}$ 'poop'		
CVV					$\mathrm{k}^{\mathrm{h}} \mathrm{e}$: 'crosseyed'
CVV	k^{h} ¢: 'care’ (L)		$\begin{aligned} & \mathrm{k}^{\mathrm{h} \hat{\varepsilon}: ~ ‘ a ~} \\ & \text { stretcher' } \end{aligned}$		
CVV	$\mathrm{k}^{\text {ha }}$ ' 'be’	$\mathrm{k}^{\mathrm{h}} \mathrm{i}$: a crossbeam'			
CVV	$\mathrm{k}^{\mathrm{h}} \mathrm{a}$: 'remain undone'	khà: 'galingal'	k'â: 'kill'	k ${ }^{\text {há: }}$ 'trade'	$\mathrm{k}^{\mathrm{h}} \mathrm{a}$: 'leg'
CVV	$\mathrm{k}^{\mathrm{h}} \mathrm{u}$: 'a ditch'	$\begin{aligned} & \text { kì̀: } \\ & \text { 'threaten' } \end{aligned}$	$\mathrm{k}^{\mathrm{h}} \mathrm{u}$: 'a couple'		
CVV	k^{h} : 'neck'		k^{h} ว: 'a joint'		
CVV				hí: onomatopoeia	$\begin{aligned} & \text { hi: ‘vagina' } \\ & \text { (V) } \\ & \hline \end{aligned}$
CVV		hè: 'parade'			hě: 'a fishing net'
CVV	hi:				hì 'dare' (S)

Thai Consonant-tone Interactions in OT

CVV		hà: 'proud'			
CVV	ha: (onomatopoeia)	hà: 'cholera'	hâ: 'five'		ha: 'look for'
CVV					hû: 'ears'
CVV	ho: (onomatopoeia)	hò: 'yell'			
CVV	ho: ‘a helicopter'	hò: 'wrap'			hフ̌: ‘a dormitory’
CVV	mi: 'have'	mì: 'noodle'		mí: 'mother' (L)	mi: 'a bear'
CVV			mê: 'mother'	mé: 'if'	mě: (exclamatio n)
CVV	mi: 'hand'				
CVV		mà: ‘absent minded’			
CVV	ma: 'come'		mâ: 'grandmother' (L)	má: 'mother' (L)	ma: 'a dog'
CVV		mù: 'group'			mu: 'a pig'
CVV				Mó: 'brag'	
CVV	mo: 'gray'		mô: 'pot'		$\begin{aligned} & \hline \text { my̌: 'a } \\ & \text { doctor' } \end{aligned}$
CVV					wi: ‘a comb'
CVV				wé: onomatopoeia	
CVV			wâ: 'exaggerate' (S)		
CVV			wâ: 'scold'		
CVV	wo: 'a litter'				wว̌: ‘a police car'
CVV			nî: 'debt'	ní: 'this'	ni: 'escape'
CVV			nह̂: 'sure'		
CVV	na: 'field'		nâ: 'face'	ná: 'aunt'	na: 'thick'
CVV					nu: 'a rat'
CVV	no: 'a horn'	ṅ̀: 'a sprout'			
CVV				lí: ‘distance'	$\begin{aligned} & \text { li: ‘a lady's } \\ & \text { man' (S) } \\ & \hline \end{aligned}$

Sugunya Ruangjaroon

CVV		lè̀: 'crosseyed'			
CVV	18: 'see'		lè: 'slide'		
CVV	li: 'gossip'			12: 'dig'	
CVV	la: 'burp'				
CVV	la: 'a donkey'		lâ: 'chase'	lá: 'exhausted'	la: 'yard'
CVV			lû: 'a track'		
CVV		lò: 'last'	lô: 'a shield'		lo: ‘a dozen'
CVV		l̀̀: 'handsome'	10̂: 'trick'	15: 'a wheel'	lǒ: 'broken'
CVV	ri: 'oval'	rì: 'dim'			
CVV			rê: 'mineral'		
CVV				ř: 'or'	
CVV	ra: 'a fungus'				
CVV	ru: 'hole'				ru: 'luxurious'
CVV	ro: 'wait'				
CVV	yi: 'mix'			yí: (exclamation)	yi: ‘halfclosed'
CVV		yè 'tease'	y $\hat{\text { E }}$ ' 'terrible'	y' : ‘a kind of lizard'	y ž: 'coward' (S)
CVV				y'í 'grab'	
CVV	ya: 'medicine'	yà: 'divorced'	yâ: 'grass'		
CVV		yù: 'live'	yû: 'wrinkle		
CVV				yó: 'sway'	
CVV	$\begin{aligned} & \text { y̌: } \\ & \text { 'compliment' } \\ & \hline \end{aligned}$		yวิ: 'bend'		
CVV	?a: 'sesame'				
CVV	?u: 'a snake'				
CVV			?ô: 'stupid'		
CVV	?د: ‘bend'			?'s: 'make up'	$\begin{aligned} & \text { ?5̌: ‘afraid' } \\ & \text { (S) } \\ & \hline \end{aligned}$

High tones do not occur when C_{2} are onsets.

C_{2}					
Syllable Shape	Mid	Low	Falling	High	Rising
CVV	pi: 'year'	pì: 'a flute'			pi: 'intensifier of black'
CVV	pe: ‘a hammock'		pê: ‘a backpack'		pe: 'limp'
CVV	Pع: 'translate'				
CVV	pa: 'throw'	pà: 'forest'	pâ: 'aunt'	pá 'father' (L)	pa: 'father' (L)
CVV	pu: 'a crab'	pù: 'grandfather'			
CVV	Ps: 'a jute'		pô: 'strut'		
CVV			bî: 'smash'		
CVV			bê: 'grim'		
CVV	Bع: 'show'				
CVV			bî: ‘stupid’ (S)		
CVV	Вə: ‘blur' (L)				
CVV		bà: 'shoulder'	bâ: 'crazy'		
CVV			bû: 'smash'		
CVV	bo: 'a bow'				bo: 'hollow'
CVV	ti: 'hit'	tì: 'a game'			$\begin{aligned} & \text { ti: ‘a man' } \\ & \text { (L) } \\ & \hline \end{aligned}$
CVV		tè: 'wander'			
CVV	Tع: 'a horn'	tè: 'but'			
CVV					tì: 'intensifier of dark'
CVV	ta: 'eyes'				
CVV		tù: 'lie' (S)			
CVV	to: 'big'				
CVV	to: 'a stump'	tò: 'connect'			
CVV	di: 'good'				

Sugunya Ruangjaroon

CVV		dè: 'erect'			
CVV		dà: 'scold'			
CVV	du: 'look'				
CVV		dò: 'erect'			
CVV			cî: 'funny'		ci: 'tickle'
CVV				cé: ‘a woman' (L)	
CVV					cě: 'intensifier of red'
CVV	ca: 'meet'	cà: ‘swollen’			$\begin{aligned} & \hline \text { cǎ: } \\ & \text { 'interfere' } \end{aligned}$
CVV			câ: 'bright'		ca: 'yes'
CVV					cu: 'short'
CVV	cs: 'dog'		cô: 'talk'		č̌: 'sit' (L)
CVV		kì: ‘how much'			
CVV				ké: 'fake’ (L)	ke: 'chic' (S)
CVV	$\mathrm{k} \varepsilon:{ }^{\prime} 3^{\mathrm{rd}} \mathrm{sg}$ person'	kè: 'old'	k $\mathrm{\varepsilon}$: 'fix'		
CVV	kə: ‘friend'		kâ: 'embarrass'		
CVV	ka: 'a crow'		kâ: 'brave'		
CVV	ku: ' $1^{\text {st }} \mathrm{sg}$ person'	kù: 'holler'	kû: 'borrow'		$\begin{aligned} & \hline \text { ku: ‘uncle’ } \\ & \text { (L) } \\ & \hline \end{aligned}$
CVV	ko: ‘a bunch'	kj̀: 'build'	kô: 'then'		
CVV	$\begin{aligned} & \text { ?i: ‘ } 3 \text { rd } \mathrm{sg} \\ & \text { person', } \end{aligned}$				
CVV	1e: 'yes'	?è: 'overflow'			
CVV	?a: 'aunt'		1â: 'spread'		
CVV		?ù: 'a garage'	1û: 'lazy' (S)		
CVV		1ò: 'boast'			
CVV			1ô: 'a plant'		P̌̌: 'yes'

APPENDIX B

All five tones can occur on CVN when C_{1} and C_{3} are onsets.
C_{1} and C_{3} with the coda [n]

Syllable Shape	Mid	Low	Falling	High	Rising
CVN	$\begin{aligned} & \mathrm{p}^{\mathrm{n} \text { in 'the }} \\ & \text { vina" } \end{aligned}$				
CVN		phèn 'escape'			
CVN	p^{h} an 'wrap'				$\begin{aligned} & \hline \mathrm{p}^{\mathrm{h}} \text { 'conjugate' } \\ & \text { 'con } \end{aligned}$
CVN	$\begin{aligned} & \hline \text { prun } \\ & \text { 'riddled' } \end{aligned}$				
CVN			p ${ }^{\text {honn }}$ 'spray'	$\begin{aligned} & \text { p}{ }^{\text {'esonn }} \\ & \text { 'escape' } \end{aligned}$	p^{h} on 'result'
CVN		phon 'pay by installment'			
CVN		fin 'opium'			
CVN				$\begin{aligned} & \hline \text { fén } \\ & \text { 'choose’ } \end{aligned}$	
CVN	fan 'teeth'				fan 'dream'
CVN		fùn 'dust'			
CVN					fon 'rain'
CVN			fôn 'bundle'		
CVN		$\mathrm{t}^{\text {hinn }}$ 'area'			
CVN			$\mathrm{t}^{\text {tren }}$ 'alter'		
CVN	t^{h} an 'in time'				
CVN	$t^{\text {n }}$ un 'fund'		thûn 'float'		
CVN			thonn 'piece'		
CVN			sîn 'finish'		
CVN			sên 'noodle'		
CVN		sàn 'shake'	sân 'short'		$\begin{aligned} & \text { san } \\ & \text { 'backbone' } \end{aligned}$
CVN	son 'naughty'		sôn 'heel'	són 'to be dislocated'	son 'thread'
CVN	$\mathrm{c}^{\text {h }}$ in 'familiar'				
CVN			chên 'for example'		
CVN	$\mathrm{c}^{\mathrm{h}} \mathrm{an}$ 'steep'			$\begin{aligned} & \mathrm{c}^{\mathrm{ch} a ́ n} \text { ' } 1^{\text {st }} \\ & \text { sg person } \end{aligned}$	$\begin{aligned} & \mathrm{c}^{\mathrm{h}} \text { an ' } 1^{\mathrm{st}} \mathrm{sg} \\ & \text { person' } \end{aligned}$
CVN	$\mathrm{c}^{\mathrm{h}} \mathrm{un}$ 'mend'			$\begin{aligned} & \text { chín } \\ & \text { 'redup, } \end{aligned}$	c^{h} un 'angry'

Sugunya Ruangjaroon

CVN	c^{h} on 'collide'				
CVN				$\mathrm{k}^{\mathrm{h}} \mathrm{en}^{\prime}$ 'squeeze'	k^{h} en 'push'
CVN			k ${ }^{\text {min }}$ ' go up '		
CVN	k^{h} an 'itch’		k^{h} rân 'feel hot\&cold'	$\mathrm{k}^{\mathrm{h}}{ }^{\text {an }}$ 'squeeze'	k^{h} an 'bowl'
CVN	$k^{\text {h }}$ un ' $2^{\text {nd }}$ sg person’	khùn 'muddy'		$\mathrm{k}^{\mathrm{h} u} \mathrm{n}$ 'familiar'	$\mathrm{k}^{\mathrm{h}} \mathrm{u}$ 'fatten'
CVN	k^{h} on 'person'		k'ôn 'thick'	$\begin{aligned} & \text { k'ón } \\ & \text { 'search' } \end{aligned}$	k^{h} on 'hair'
CVN					hin 'rock'
CVN					hen 'see'
CVN		hàn 'cut'			han 'turn back'
CVN		hùn 'mannequin'	hûn 'share'		
CVN		mìn 'insult'			
CVN					$\begin{aligned} & \hline \text { men } \\ & \text { 'smelly' } \end{aligned}$
CVN	min 'dizzy'				
CVN	man 'greasy'	màn 'persistent'	mân 'engage'		man 'sterile'
CVN					mun 'spin'
CVN	mon 'round'	mòn 'dull'			
CVN	wan 'day'	wàn 'worry'			
CVN			wûn 'busy'	$\begin{aligned} & \text { wún } \\ & \text { 'agar' } \end{aligned}$	
CVN	won 'go round'				
CVN		nàn 'fat'	nân 'there'	nán 'that'	
CVN			nûn 'kapok'		$\begin{aligned} & \text { nun } \\ & \text { 'support' } \end{aligned}$
CVN				lín 'tongue'	
CVN	len 'lense' (L)		lên 'play'		
CVN			lân 'loud'		
CVN				$\begin{aligned} & \text { lún } \\ & \text { 'cheer' } \end{aligned}$ (S)	
CVN	lon 'in a hurry			lón 'overflow'	
CVN	rin 'pour'				
CVN				$\begin{aligned} & \hline \text { rán } \\ & \text { 'stubborn' } \end{aligned}$	

Thai Consonant-tone Interactions in OT

CVN	yen ‘cold’				
CVN	yən 'ugly' (S)				
CVN	yan ‘push'	yàn ‘afraid' (S)			
CVN		yùn ‘softy'			
CVN			yôn ‘wrinkle'		
CVN	?ən 'money'				

High tones do not occur when C_{2} are onsets.

C_{2}					
$\begin{aligned} & \text { Syllable } \\ & \text { Shape } \end{aligned}$	Mid	Low	Falling	High	Rising
CVN		pìn 'pin'			
CVN	pen 'be'				
CVN		pàn 'out of date'			
CVN		pàn 'cycle'	pân' 'mold'		
CVN	pon 'mix'	pòn 'ground'	$\mathrm{p}(\mathrm{l}$ ôn 'rob'		
CVN	bin 'fly'				
CVN			bîn (onomatopoeia)		
CVN			bân 'slang'		
CVN		bàn 'cut down'	bân 'a portion'		
CVN	bon 'on'	bòn 'complain'			
CVN					bun 'civil'
CVN		bòn 'casino'			
CVN			tên 'dance'	$\begin{array}{\|l\|} \hline \text { tén 'tent' } \\ \text { (L) } \\ \hline \end{array}$	
CVN	tan 'not hollow,				
CVN	tun 'store'	tùn 'mole'			tun 'steam'
CVN	ton 'body'		tôn 'classifier for trees'		
CVN	din 'soil'		dîn 'move'		
CVN			dôn 'cool' (S)		
CVN	dan 'push'				
CVN	dun 'push'		dûn 'a piece'		
CVN			dôn 'penetrate'		

Sugunya Ruangjaroon

CVN	can 'the moon'	càn 'a trap'			
CVN	cun 'support'		cûn' 'nosy' (S)		
CVN	con 'poor''				
CVN	kin 'eat'			Ǩ̌n 'smart'' (S)	
CVN					
CVN	kan 'keep out'		kân 'bar'		
CVN	CVN	k(r)on 'snore'		kôn 'buttocks'	
CVN	Pin 'into' (S)				
CVN	Pen 'tendon'				
CVN			?ân 'hold back'		
CVN		?ùn 'warm'			

APPENDIX C

All five tones occur on CVG when C_{1} and C_{3} are onsets.

C_{1} and C_{3}					
Syllable Shape	Mid	Low	Falling	High	Rising
CVG		phày 'bamboo,	phây 'cards'		
CVG		$\mathrm{p}^{\text {hàw }}$ 'tribe			p^{h} aw 'burn'
CVG				$\mathrm{p}^{\text {húy 'impel' }}$	
CVG	fiw 'a fuse'				
CVG	fay 'fire'	fày 'pay attention to'			$\begin{aligned} & \text { fay 'a } \\ & \text { mole' } \end{aligned}$
CVG			fâw 'keep an eye on'		
CVG	$\begin{aligned} & \mathrm{t}^{\mathrm{t} \mathrm{iw}} \\ & \text { 'range' } \\ & \hline \end{aligned}$				
CVG	$\mathrm{t}^{\text {hay }}$ 'Thai'	$\begin{aligned} & \hline \text { thày } \\ & \text { 'ransom' } \end{aligned}$			$\begin{array}{\|l} \hline \mathrm{t}^{\mathrm{h}} \text { ay 'ask } \\ \text { for' } \\ \hline \end{array}$
CVG	$\mathrm{t}^{\text {haw }}$ 'grey'		$\begin{aligned} & \mathrm{t}^{\mathrm{h}} \hat{\mathrm{a} w} \\ & \text { 'elderly' } \end{aligned}$		$\begin{aligned} & \mathrm{t}^{\mathrm{h}} \mathrm{aw} \\ & \text { 'creeping' } \end{aligned}$

Thai Consonant-tone Interactions in OT

CVG	$\begin{aligned} & \mathrm{t}^{\mathrm{n}} \mathrm{uw} \text { 'a } \\ & \text { buffalo' } \end{aligned}$			$\mathrm{t}^{\mathrm{n}} \mathrm{ún}^{\prime}$ (onomatopoeia)	thuw 'spit'
CVG	siw 'arrest' (S)	sìw 'a chisel'			siw 'pimple'
CVG	say "banyan tree’	sày 'wear'	sây 'stuffing'	sáy 'search for food'	say 'clear'
CVG	saw 'tone down' (S) down' (S)		sâw 'sad'		saw 'pillar'
CVG					suy 'push'
CVG					$\mathrm{c}^{\text {h }}$ iw 'fast'
CVG			${ }^{\text {chây }}$ 'yes'	${ }^{\text {cháy 'use' }}$	
CVG			$\mathrm{c}^{11} \mathrm{âw} \mathrm{'rent'}$		c^{n} aw 'dying'
CVG			$\begin{aligned} & \mathrm{c}^{\mathrm{n}} \hat{\mathrm{n}} \text { 'messy’} \\ & \text { (S) } \end{aligned}$		$\mathrm{c}^{\mathrm{n}} \mathrm{uy}$ 'fast'
CVG	$\mathrm{k}^{\mathrm{h}}(\mathrm{r}) \mathrm{ay}$ 'who'	knày 'eggs'	k'ây 'fever'		k^{n} ay 'reveal'
CVG			k'âw 'enter'	$\mathrm{k}^{\mathrm{n} \text { áw } 3^{\mathrm{n}} \text { sg } \mathrm{sg}}$ person'	
CVG	knuy 'talk'			knúy 'search for'	$\mathrm{k}^{\mathrm{n}} \mathrm{ly}$ 'fluff'
CVG			hîw 'carry'		hiw 'hungry'
CVG		$\begin{aligned} & \hline \text { hày 'bad' } \\ & \text { (S) } \end{aligned}$			
CVG			hây 'give'		hay 'jar'
CVG		hàw 'bark'			haw 'a flea'
CVG		mày 'new'	mây 'not'	máy ‘question particle'	may 'question particle’
CVG	$\begin{aligned} & \hline \text { maw } \\ & \text { 'drunken' } \\ & \hline \end{aligned}$				maw 'take all of'
CVG	wiw 'view'				wiw 'dizzy'
CVG	way 'fast'				way 'move'
CVG			wâw 'speak’ (D)	wáw 'curve'	
CVG			nîw 'gallstone'		
CVG	nay 'in'				nay 'where'
CVG	naw 'stitch'		nâw 'rotten'		
CVG			lây 'chase'		lay 'flow'
CVG			lâw 'tell'		law 'sharpen'
CVG	luy 'wade through'		lûy 'fray'		
CVG	rew 'fast'				
CVG	ray 'mite'		rây 'field'		
CVG	raw ' 3 ' ${ }^{\text {td }} \mathrm{pl}$ person'				
CVG	yay 'web'	yày 'big'			

Sugunya Ruangjaroon

CVG	yaw 'young'			yáw 'tease'	
CVG			yûy 'crumble'		
CVG	?aw 'shadow'				?aw 'lonely'

High tones do not occur when C_{2} are onsets.

C_{2}					
$\begin{gathered} \hline \text { Syllable } \\ \text { Shape } \end{gathered}$	Mid	Low	Falling	High	Rising
CVG					$\begin{aligned} & \hline \text { piw ‘miss' } \\ & \text { (S) } \end{aligned}$
CVG	pay 'go'				
CVG		pàw 'blow'	Pâw 'target'		
CVG	$\begin{aligned} & \text { puy } \\ & \text { 'fluffy, } \end{aligned}$				puy 'fertilizer'
CVG	$\begin{aligned} & \text { bay 'a } \\ & \text { leaf' } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { bây } \\ & \text { 'dumb, } \end{aligned}$		
CVG	baw 'light'		bâw 'a socket'		
CVG	tiw 'teach' (S)		tîw 'small' (S)		
CVG		tày 'climb'			
CVG	$\begin{aligned} & \hline \text { taw } \\ & \text { 'stove' } \end{aligned}$	tàw 'turtle'	$\begin{aligned} & \hline \text { Tâw } \\ & \text { 'breast' } \end{aligned}$		taw 'dice'
CVG		tùy ‘swollen’ (S)	tûy 'bulge'		
CVG	$\begin{aligned} & \hline \text { daw } \\ & \text { 'guess' } \end{aligned}$		dâw 'make love' (V)		
CVG					ciw 'small'
CVG	cay 'heart'				
CVG			câw ' $2 n^{\text {d }}$ pl person' (A)		
CVG		kìw 'constricted'			$\begin{aligned} & \hline \text { kiw } \\ & \text { 'shame' (S) } \\ & \hline \end{aligned}$
CVG	kay 'far'	kày 'chicken'	kây 'near'		kay 'pretend' (S)

Thai Consonant-tone Interactions in OT

CVG	kaw 'scratch'	kàw 'old’		káw 'disease'(L)	kaw 'expert' (S)
CVG	Paw 'take'				
CVG				Cúy (onomatopoeia)	

APPENDIX D

Both high and low tones can occur when C_{1} and C_{3} are onsets and stops are codas. ? is not included in stops.

C_{1} and C_{3}					
Syllable Shape	Mid	Low	Falling	High	Rising
CVT		$\mathrm{p}^{\text {hàp 'pub' }}$ (L)		p^{h} áp 'fold'	
CVT				$\mathrm{p}^{\text {hóp }}$ 'meet'	
CVT		$\mathrm{p}^{\text {h }}$ it 'wrong'		$\mathrm{p}^{\text {hít 'poison' }}$	
CVT		phèt 'spicy'		$\begin{aligned} & \mathrm{p} \mathrm{p}^{\mathrm{he} \text { ét }} \\ & \text { diamond' } \end{aligned}$	
CVT		$\begin{aligned} & \mathrm{p}^{\text {hàt 'stir- }} \\ & \text { fried' } \end{aligned}$		$\mathrm{p}^{\text {hát }}$ 'a fan’	
CVT		p ${ }^{\text {nut }}$ 'bob up'		$\mathrm{p}^{\mathrm{h}} \mathrm{u}^{\prime}$ 'Buddhist'	
CVT		$\begin{aligned} & \mathrm{p}^{\mathrm{h}}{ }^{\text {'vegetable' }} \end{aligned}$		phák 'relax'	
CVT				phók 'bring'	
CVT				fúp 'drop'	
CVT				fít 'tight' (L)	
CVT				fát 'fight'	
CVT		fàk 'an ear'		fák 'squash'	
CVT				f(l)úk ‘fluke’ (L)	
CVT				t'íp 'tip’ (L)	
CVT				$\mathrm{t}^{\text {tip }}$ 'dull'	
CVT				tháp ‘run over'	
CVT				t'úp 'smash'	
CVT				t'óp 'double'	
CVT				$\begin{aligned} & \hline \mathrm{t}^{\mathrm{h} \mathrm{It}} \\ & \text { 'direction' } \end{aligned}$	
CVT				thét 'lie'	
CVT		thàt 'next'		thát 'wear'	

Sugunya Ruangjaroon

CVT			thót 'carry a number'	
CVT	thàk 'knit'		t'ák 'greet'	
CVT			t'úk 'sorrow'	
CVT	$\mathrm{t}^{\text {hòk }}$ 'discuss'			
CVT	sìp 'ten'		síp 'zip' (L)	
CVT	sàp 'chop'		sáp 'money'	
CVT			súp 'soup' (L)	
CVT			sóp 'bury one's face	
CVT	sit 'students'			
CVT	sèt 'finish'			
CVT	sàt 'animals'		sát 'hit' (S)	
CVT	sùt 'extreme'		sút 'subside'	
CVT	sòt 'fresh'		sót 'sip'	
CVT	sìk 'wear out'			
CVT	sàk 'tattoo'		sák 'wash'	
CVT	sùk 'ripe'		súk 'hide'	
CVT			chúp 'coat'	
CVT			$\mathrm{c}^{\text {hít }}$ 'close'	
CVT			chét 'wipe'	
CVT	chàt 'umbrella'		$\mathrm{c}^{\text {hát }}$ 'clear'	
CVT	chùt 'drag'		chút 'dress'	
CVT			chék 'check' (L)	
CVT			chák 'seizure'	
CVT			chák 'abundant'	
CVT	$\mathrm{c}^{\text {nòk }}$ 'grab'		$\mathrm{c}^{\text {hók }}$ 'punch'	
CVT	khàp 'drive'		kháp 'tight'	
CVT	k'òp 'bite'		k ${ }^{\text {hopp }}$ 'know'	
CVT			$\mathrm{k}^{\text {hít 'think' }}$	
CVT	k'èt 'to be afraid’			
CVT	k'àt 'polish'		k'át 'select'	
CVT	k ${ }^{\text {hut }}$ 'dig'			
CVT	k'ôt 'spiral'		k^{h} 'ót 'curve'	
CVT			$\mathrm{k}^{\mathrm{h}} \mathrm{k}$ 'to be vigorous'	
CVT		$\mathrm{k}^{\mathrm{h}}(\mathrm{l}) \hat{\mathrm{a} k}$ 'crowded’ (S)		
CVT			k'úk ‘jail'	

Sugunya Ruangjaroon

CVT	làp 'sleep'	láp 'secret'	
CVT	lòp 'hide'	lóp 'erase'	
CVT		lít 'litre' (L)	
CVT		lát 'take a shortcut'	
CVT		lót 'decrease'	
CVT	lèk 'iron'	lék 'small'	
CVT		17k 'deep'	
CVT	làk 'main'	lák ‘steal'	
CVT		lúk ‘look' (L)	
CVT			
CVT		ráp 'receive'	
CVT		róp 'battle'	
CVT		rát 'tight'	
CVT		rút 'hurry'	
CVT		rót 'cars'	
CVT		rák 'love'	
CVT		rúk 'invade'	
CVT		rók 'messy'	
CVT		yép 'stitch'	
CVT		yáp	
CVT		yúp 'reduce'	
CVT		yét 'have sex' (V)	
CVT		y't 'hold'	
CVT		yát 'stuff'	
CVT	yùt 'stop'		
CVT	yòt 'drop'		
CVT	yàk 'wavy'	yák ‘a gigantic demon	
CVT	yòk 'jade'	yók 'lift'	
CVT		?áp 'bite'	
CVT		?át 'force open'	
CVT		?ót 'cancel'	
CVT		?ók 'greedy'	

High tones do not occur on CVT ($\mathrm{p}, \mathrm{t}, \mathrm{k}$) when $\mathrm{C}^{2} \mathrm{~s}$ are onsets but they do when coda is ?
C_{2}

Syllable Shape	Mid	Low	Falling	High	Rising
CVT		pìt 'close'			
CVT		pèt 'duck'			
CVT		pàt 'swipe'			
CVT		pùt (onomatopoeia)			
CVT		pòt 'lie'			
CVT		pïk ‘a compact mass'			
CVT		pàk 'pitch'			
CVT		bùp 'bashed'			
CVT		bìt 'twist'			
CVT		bèt 'bait'			
CVT		bùt 'children'			
CVT		bòt 'ground'			
CVT		bïk 'stout'			
CVT		bùk 'invade'			
CVT		bòk 'on land'			
CVT		tàp 'liver'			
CVT			tûp (onomatopoeia)		
CVT		tòp 'slap'			
CVT		tit 'attach'			
CVT		tàt 'cut off'			
CVT		tòt 'fart'			
CVT		dìp 'raw'			
CVT		dàp 'extinguished'			
CVT		dèt ''pluck'			
CVT		dàt 'bend'			
CVT		dùt 'as if'			
CVT		dèk 'child'			
CVT		dik 'late night'			
CVT		dàk 'trap'			
CVT		dòk 'fruitful'			
CVT		cìp 'sip'			
CVT		cèp 'painful'			
CVT		càp 'catch'			

Sugunya Ruangjaroon

APPENDIX E

CVVT only has low and falling tones when C_{1} and C_{3} are onsets.
C_{1} and C_{3}

$\begin{aligned} & \hline \text { Syllable } \\ & \text { Shape } \end{aligned}$	Mid	Low	Falling	High	Rising
CVVT			$\begin{aligned} & \hline \text { phâp } \\ & \text { 'painting' } \\ & \hline \end{aligned}$		
CVVT			$\mathrm{p}^{\text {hêe:t 'gender' }}$		
CVVT			$\mathrm{p}^{\text {trex: }}$ 'doctor'		
CVVT			$\mathrm{p}^{\text {kixit }}$ 'plants'		
CVVT			p^{h} (1)â:t 'miss'		
CVVT			p ${ }^{\text {hât. 'speak }}$ '		
CVVT			$\begin{aligned} & \mathrm{p}^{\mathrm{h}}(\mathrm{l}) \hat{\mathrm{s}} \mathrm{t} \text { 'talk } \\ & \text { volubly' } \\ & \hline \end{aligned}$		
CVVT			$\begin{aligned} & \mathrm{p}^{\mathrm{h}}(\mathrm{r}) \hat{\mathrm{a}: \mathrm{k}} \\ & \text { 'separate' } \end{aligned}$		
CVVT			fî:p 'small'		
CVVT			fê:p 'deflated'		
CVVT		fi:t 'tight money'			
CVVT		fà:t 'acidulous'	fâ:t 'eat' (V)		
CVVT			fô:t ‘a kissing sound'		
CVVT				fé:k 'fake' (L)	
CVVT		fà:k 'give'	fâ:k 'side'		
CVVT				f(1)ú:k ‘fluke’ (L)	
CVVT			fô:k 'bleach'		
CVVT		hì:p 'a box'			
CVVT		hè:p 'hoarse'			
CVVT		hà:p 'carry'			
CVVT		hò:p 'carry'			
CVVT		hè:t 'cause'			
CVVT		hì:t 'asthma'			
CVVT		hà:t 'beaches'			
CVVT		hù:t 'a wart'		hú:t 'hood' (L)	
CVVT		hò:t 'cruel'			
CVVT		hè:k 'open'			
CVVT		hà:k 'if'			

Sugunya Ruangjaroon

CVVT	hò:k 'a lance'			
CVVT	mò̀p 'crouch'	mô:p 'give'		
CVVT		mît 'a knife'		
CVVT		mîtt 'dark'		
CVVT	mà:t 'damp'			
CVVT		mô:t 'a weevil'		
CVVT		mê:k 'cloud'		
CVVT	mà:k ‘an areca palm'	mâ:k 'very'		
CVVT	mô:k 'fog'			
CVVT		wû:p 'pass out'		
CVVT			wít (onomatopoeia)	
CVVT	wà:t 'frightened'	wâ:t 'draw'		
CVVT	wò:t 'vote' (L)			
CVVT	wò: 'spawn'	wô:t 'die down'		
CVVT	wè:k 'push aside'		wé:k (onomatopoeia)	
CVVT		wô:k 'monkey'		
CVVT	nìp 'sandwich'			
CVVT	nè:p 'sarcastic'			
CVVT		nô:p 'slowly'		
CVVT		nô:p 'respect'		
CVVT		nê:t 'eyes'		
CVVT		nâ:k 'a seal'		
CVVT	nò:k 'a bump'			
CVVT		nô:k 'out'		
CVVT		lî̀p 'lean'		
CVVT		l̂̀:p ‘stick out'		
CVVT		fi:p 'a narrow		

Thai Consonant-tone Interactions in OT

		hole'		
CVVT		lồp 'greedy'		
CVVT		1̂:p 'sneak in'		
CVVT	lètt 'late' (L)			
CVVT		lâ:t 'slope'		
CVVT	lì: 'straw'	lô:t 'go through'		
CVVT	lì:k 'avoid'			
CVVT		lê:k 'number'		
CVVT	lè:k 'smash'	lê:k 'trade'		
CVVT		lâ:k ‘break up'		
CVVT	là:k 'assorted'	lâ:k 'drag'		
CVVT		lû:k 'children'		
CVVT		lô:k 'earth'		
CVVT	lò:k 'cheat'	lô:k 'copy'		
CVVT		rîp 'hurry'		
CVVT		râ:p 'smooth'		
CVVT		$\begin{aligned} & \hline \text { rû:p } \\ & \text { 'pictures' } \end{aligned}$		
CVVT		rô.p 'round'		
CVVT	rì: 'cheer leader'	rî:t 'iron'		
CVVT		rê:t 'rhino'		
CVVT		râ:t 'fancy'		
CVVT		râ:t 'spill'		
CVVT		rû: 'pull'		
CVVT		rô:t 'survive'		
CVVT		râ:k 'root'		
CVVT		rô:k 'disease'		
CVVT	yàp 'rough'			
CVVT	yà:t 'drop'			
CVVT	y z̀t 'drop'	y ${ }^{\text {a }}$ 't 'tip'		
CVVT		y $\hat{\varepsilon}$:k 'separate'		

Sugunya Ruangjaroon

CVVT	yà̀: 'want'	yâ:k 'difficult'			
CVVT			yồk ‘swing'		
CVVT		yว̀:k 'tease'	yỳ:k 'pain'		
CVVT			?î:p 'take a nap'		
CVVT			?â:p 'eat' (s)		
CVVT			?’̂:p 'a hat'		
CVVT			?ê:k 'exhausted'		
CVVT			?ô:k 'nod'		
CVVT		?ذ̀:k 'grey hair'	?’̂:k 'grow'		

Falling tones do not occur on CVVT when $\mathrm{C}_{2} \mathrm{~s}$ are onsets.

C_{2}					
Syllable Shape	Mid	Low	Falling	High	Rising
				píit 'intensifier of sour'	
CVVT		$p(r) e ̀: t ~ ‘ a ~$ ghost'			
CVVT				p ह.t 'intensifier fof red'	
CVVT		pz̀: 'open'			
CVVT		pà:t 'cut'			
CVVT		pùt 'reveal'			
CVVT		$\mathrm{p}(\mathrm{r}) \mathrm{òt}$ 'please'			
CVVT		ṗ̀t 'lung'			
CVVT		pì: 'wing'			
CVVT		p(l) ह̀: 'strange’			
CVVT		pà:k 'a mouth'			
CVVT		p(l)ù: ${ }^{\text {'grow' }}$			
CVVT		pò:k 'uproarious'		pó:k (onomatopoeia)	
CVVT		pı̀:k 'peel'			
CVVT		bì:p 'squeeze'			

Thai Consonant-tone Interactions in OT

CVVT	bè:p 'pattern'		
CVVT	bà:p 'sin'		
CVVT	bà: 'feet'		
CVVT	bù:t 'go bad'		
CVVT	bò:t 'church'		
CVVT	bò:t 'blind'		
CVVT	bè:k 'carry'		
CVVT	bà:k 'struggle'		
CVVT	bò:k ‘hitchhike’		
CVVT	bò:k 'tell'		
CVVT	tì:p 'constricted'		
CVVT	tùp 'droop'		
CVVT	tò:p 'answer'		
CVVT	tè:t 'clitoris' (V)		
CVVT	tì: 'stingy'		
CVVT	tà:t 'brocade'		
CVVT	tù:t 'buttock'		
CVVT	tò:t 'nibble'		
CVVT	tà:k 'expose'		
CVVT	tò:k 'hammer'		
CVVT	dà:p 'a sword'		
CVVT		dó:p 'dope' (L)	
CVVT	dì: 'flick'		
CVVT	dè:t 'sun'		
CVVT	dù:t 'suck'		
CVVT	dòt 'jump'		
CVVT	d̀̀:t 'sneak out'		
CVVT	dè:k 'eat' (V)		
CVVT	dò:k 'flowers'		
CVVT	cìp 'crimp'		
CVVT	cù: 'kiss'		
CVVT	ċ̀:p 'a digging tool'		
CVVT		cít 'intensifier for sour'	

Sugunya Ruangjaroon

CVVT	cìt 'tasteless'		
CVVT	cò:t 'questions’		
CVVT	còtt 'park'		
CVVT	cè:k 'give away'		
CVVT	cà:k 'from'		
		có:k 'joke' (L)	
CVVT	cò:k 'water lettuce'		
CVVT	kìp 'hoof'		
CVVT	k(l)è:p 'husk'		
CVVT	k(r)à:p 'show respect'		
CVVT	k(1) $̀$: p 'crispy		
CVVT	kì: 'hinder'		
CVVT	kò:t 'born'		
CVVT	kò:t 'angry'		
CVVT	kj̀:t 'hug'		
CVVT	kà:k 'restrain'		
CVVT	kò:k 'incubate'		
CVVT	k̀̀k 'pour'		
CVVT	? ¢̀: 'hide'		
CVVT	Tà:p 'bathe'		
CVVT	?ò:p 'hug'		
CVVT	Pèt 'scold'		
CVVT	Pi:t 'swollen'		
CVVT	Pà:t 'maybe'		
CVVT	Pù:t 'a camel'		
CVVT	13̀t 'plead'		
CVVT	Pè:k 'leading'		
CVVT	? ${ }^{\text {a }}$ ' 'go out'		

APPENDIX F

All five tones can occur on CVV when C_{1} and C_{3} are onsets.

C_{1} and C_{3}					
$\begin{array}{\|c} \hline \text { Syllable } \\ \text { Shape } \end{array}$	Mid	Low	Falling	High	Rising
CVVG	$\begin{aligned} & \left.\hline \mathrm{p}^{\mathrm{h}} \mathrm{r}\right) \varepsilon: \mathrm{w} \\ & \text { 'sparkling' } \\ & \hline \end{aligned}$				
CVVG					p'žy 'reveal'
CVVG	p^{h} a:y 'pie' (L)		p ${ }^{\text {hâay }}$ 'lose'		
CVVG	p ${ }^{\text {ho.y 'note' }}$				
CVVG	$\begin{aligned} & \mathrm{p}^{\mathrm{h}(\mathrm{l}) \mathrm{x} \cdot \mathrm{y} \times \mathrm{a}} \\ & \text { gem' } \end{aligned}$		$\begin{aligned} & \hline \mathrm{p}^{\mathrm{h}}(\mathrm{r}) \hat{\mathrm{x}} \mathrm{y} \\ & \text { 'indiscreetly' } \end{aligned}$		
CVVG					fa:y 'a dam'
CVVG	fa:w 'fowl' (L)				
CVVG					fǒ:y 'brag'
CVVG					t^{t} ¢:w 'row'
CVVG	$\mathrm{t}^{\mathrm{h}} \mathrm{a}: \mathrm{y}$ 'guess'	$\begin{aligned} & \hline \mathrm{t}^{\text {hà:y }} \\ & \text { 'transfer' } \end{aligned}$		tháy 'the last'	
CVVG				t'á:w 'foot'	
CVVG	$\mathrm{t}^{\text {h }}$: y 'throw'	$\begin{aligned} & \mathrm{t}^{\mathrm{h}} \mathrm{y}: \mathrm{y} \\ & \text { 'mean }, \end{aligned}$	$\mathrm{t}^{\text {h/ }}$: y 'words'		$\mathrm{t}^{\text {thy }} \mathrm{y}$ ' 'move'
CVVG					sž:y 'turn over'
CVVG	sa:y 'sand'	sà:y 'shake'			sa:y 'late'
CVVG	sa:w 'wash'				sa:w 'you'
CVVG	ss:y 'trim'		sวิ:y 'necklace'		š̌:y 'pick'
CVVG	$c^{\text {h }}$ ə:y 'out of date’				$\begin{aligned} & \hline \mathrm{c}^{\mathrm{h}} \mathrm{y} \text { : } \\ & \text { 'indifferent' } \end{aligned}$
CVVG	$\mathrm{c}^{\text {h }}$:y 'male'				$\mathrm{c}^{\text {h }}$:y ${ }^{\text {'play' }}$
CVVG	$\begin{aligned} & \hline \mathrm{c}^{\mathrm{h}} \mathrm{a}: \mathrm{w} \\ & \text { 'nationality' } \end{aligned}$				$\begin{aligned} & \mathrm{c}^{\mathrm{h}} \mathrm{a}: \mathrm{w} \\ & \text { 'scandal' } \end{aligned}$
CVVG	cho:y 'blow gently'				
CVVG	k^{h} :y ' 'use to'				khǎ:y ‘son-inlaw'

Sugunya Ruangjaroon

CVVG	$\begin{aligned} & \hline \mathrm{k}^{\mathrm{h}} \text { a:y } \\ & \text { 'disgorge' } \end{aligned}$	$\begin{aligned} & \hline \text { khà:y } \\ & \text { 'net' } \end{aligned}$	khâ:y 'camp'	$\begin{aligned} & \hline \mathrm{k}^{\mathrm{h}}(\mathrm{l}) \text { á: } \\ & \text { 'resemble' } \end{aligned}$	$\mathrm{k}^{\mathrm{h}} \mathrm{a}$:y 'sell'
CVVG	k^{h} a:w 'fishy'	$\begin{aligned} & \hline \text { khà:w } \\ & \text { 'news } \end{aligned}$	k ${ }^{\text {hâ:w }}$ 'rice’		k^{h} :w 'white'
CVVG					ha:y 'missing'
CVVG			hâ:w 'daring'		ha:w 'yawn'
CVVG					ho:y 'exhausted'
CVVG	mع:w 'a cat'			Méw ‘a tribesman'	
CVVG			mâ:y 'widow'		ma:y 'a notice'
CVVG	we:w 'sparkling'				
CVVG	Wa:y 'die'		wâ:y 'pay respect'	wá:y (onomatopoeia)	wa:y 'a rattan'
CVVG	wa:w 'sparkling'		wâ:w 'a kite'		
CVVG	Wo:y 'yell'				
CVVG	ne:w 'range'				
CVVG	nə:y 'butter'				
CVVG	$\begin{aligned} & \hline \text { na:y 'a } \\ & \text { master' } \end{aligned}$	nà:y 'boring'			
CVVG					na:w 'cold'
CVVG		nั̀:y ‘a little bit’		nó:y 'little'	nว̌:y 'exclamation
CVVG	le:w 'bad'				le:w 'liquid'
CVVG	la:y 'pass'				
CVVG	la:y 'pattern'				la:y 'diversity'
CVVG	la:w 'Laos'				la:w 'a spear'
CVVG	lo:y 'float'				
CVVG				rá: 'bad'	
CVVG	ra:w 'a rail'			rá:w 'crack'	
CVVG	ro:y 'wither'				
CVVG	ro:y 'a trace'			r's:y 'hundred'	
CVVG				yá:y 'mock'	

CVVG	ya:y 'grandmother'			yáy 'move out'	
CVVG	ya:w 'long'				
CVVG				yó:y 'weeping'	
CVVG	?ə:y 'look up'				
CVVG			?â:y 'easy'		?a:y 'turn face up'
CVVG				?á:w 'a spear'	

High tones do not occur on CVVG when $\mathrm{C}_{2} \mathrm{~s}$ are onsets.

Syllable Shape	Mid	Low	Falling	High	Rising
CVVG	p(l)e:w ‘a flame'				
CVVG	p(r)z:y 'hint'				
CVVG	p(1)a:y 'tip'				
CVVG	$\begin{aligned} & \hline \mathrm{p}(\mathrm{r}) \mathrm{oxy} \\ & \text { ‘sprinkle' } \end{aligned}$				
CVVG		p(1)̀̀:y 'let go'			
CVVG		bà:y 'afternoon'			
CVVG		bà:w 'a servant'			
CVVG	bo:y 'whip'				
CVVG	trey 'a plant'				
CVVG	Ta:y 'die'		tâ:y ‘south'		
CVVG			dâ:y 'a thread'		
CVVG	da:w 'a star'				
CVVG	do:y 'by'				
CVVG	do:y 'a hill'		dô:y 'inferior'		
CVVG	ce:w 'paddle'				
CVVG		cà:y 'distribute'			

Sugunya Ruangjaroon

CVVG			$\begin{aligned} & \hline \text { câ:w } \\ & \text { 'royal' } \end{aligned}$		
CVVG			$\begin{aligned} & \text { k } \hat{\text { ke:w ‘a }} \\ & \text { glass' } \\ & \hline \end{aligned}$		
CVVG	kə:y 'overlap'				
CVVG	ka:w 'a glue'		$\begin{aligned} & \hline \text { kâ:w } \\ & \text { 'walk' } \end{aligned}$		
CVVG	ko:y 'shovel'				
CVVG		Pà: 'speak'			
CVVG	2a:y 'shy'		$\begin{aligned} & \hline \text { Râ:y } \\ & \text { 'brother' } \end{aligned}$ (D)		
CVVG		Tà:w 'a bay'	$\begin{aligned} & \text { ?â:w } \\ & \text { 'stuffy' } \end{aligned}$		
CVVG	Ro:y (onomatopoeia)			Ró:y (onomatopoeia)	
CVVG			$\begin{aligned} & \hline \text { 1ô:y } \\ & \text { 'sugar } \\ & \text { cane' } \\ & \hline \end{aligned}$		

[^0]: ${ }^{1}$ Phonetically, this sound is post-alveolar.

[^1]: ${ }^{2}$ Abbreviations are as follows: $\mathrm{O}=$ obstruent, $\mathrm{R}=$ sonorant, $\mathrm{T}=$ stop, $\mathrm{L}=$ liquid, $\mathrm{N}=$ nasal, $\mathrm{G}=$ glide and $\mathrm{V}=$ vowel .

[^2]: ${ }^{3}$ A word may have more than one meaning. For convenience, I gloss only one meaning.
 ${ }^{4}$ A segment in brackets is defined as optional. Some people do not pronounce it in informal speech.

[^3]: 5 Note that a TBU is a mora structurally. I simply use the notation "TBU" to highlight the fact that only sonorant moraic segments are able to have tones

[^4]: ${ }^{6}$ Ladefoged and Maddieson (1996) note that voiced stops are "stiff".

[^5]: ${ }^{7}$ Note that Thai speakers only allow high tones in onomatopoeia, loanwords and proper names (i.e., nicknames) when C_{2} segments are onsets. These onsets are not used in the nativized Thai lexicon. In order to capture this pattern as a property of the Thai lexicon, we must constrain it to exclude the high tone in these environments. The data is shown in the appendices.

[^6]: ${ }^{8}$ See tableau (32) for reasons for the " ∞ " condition.

[^7]: ${ }^{9}$ Notice also a candidate with a mid tone might possibly win if $* \mathrm{M}$ outranks $* \mathrm{~L}$ because there is no overt evidence that these two constraints are crucially ranked with respect to each other. It makes no difference though since both are possible attested Thai outputs.

[^8]: ${ }^{10}$ Note that $*[-\mathrm{SG}] 8[\mathrm{v}]$ is applied at a distance. The reason that the " 8 " condition is needed is shown in tableau (32).

[^9]: ${ }^{11}$ Crucially, ${ }^{*}[-S G] \infty[$ v́] counts each TBU that is H , not each H -autosegment. If it counted each H -autosegment, then (31a) would actually win.

[^10]: ${ }^{12}$ This is unresolved which is fine. How could one ever tell which is selected optimally? Clearly, linearity prefers $/ \mathrm{LH} / \rightarrow[\mathrm{LH}]$ and $/ \mathrm{HL} / \rightarrow[\mathrm{HL}]$ but it has nothing to say on $/ \mathrm{H} /$
 $\rightarrow[\mathrm{LH}]$ or [HL].

